Sun Shujing, Zhao Huijie, Guo Qi, Wang Yijie
School of Instrumentation and Opto-Electronic Engineering, Beihang University, Beijing 100191, China.
Qingdao Research Institute, Beihang University, Qingdao 266104, China.
Materials (Basel). 2024 Nov 16;17(22):5606. doi: 10.3390/ma17225606.
For the acousto-optic tunable filter (AOTF)-based spectral imaging systems, the diffraction efficiency of the AOTF is a primary factor affecting system throughput. Moreover, the distribution of the acoustic field within the AOTF fundamentally determines the device's diffraction efficiency. Thus, the design of an AOTF device including a transducer and absorber to achieve a uniform acoustic field distribution plays an important role in improving diffraction efficiency. This study proposed an acoustic absorbing structure using mercurous halide crystals' strong acoustic anisotropy to realize the conversion from shear horizontal wave to surface wave at the boundary and rapid dissipation. Snell's law for acoustically anisotropic media is employed to design the angle of the acoustic absorbing structure. Experiments of mercurous halide-based AOTF demonstrate that this absorbing structure can effectively enhance diffraction efficiency.
对于基于声光可调谐滤波器(AOTF)的光谱成像系统,AOTF的衍射效率是影响系统通量的主要因素。此外,AOTF内的声场分布从根本上决定了该器件的衍射效率。因此,设计一种包括换能器和吸收器以实现均匀声场分布的AOTF器件,对提高衍射效率起着重要作用。本研究提出了一种利用卤化亚汞晶体的强声学各向异性的吸声结构,以实现边界处水平切变波到表面波的转换及快速耗散。采用声学各向异性介质的斯涅尔定律来设计吸声结构的角度。基于卤化亚汞的AOTF实验表明,这种吸声结构能有效提高衍射效率。