Suppr超能文献

基于液晶可调性的双宽带拓扑光子晶体边缘态

Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability.

作者信息

Zhang Jinying, Wang Bingnan, Wang Jiacheng, Wang Xinye, Zhang Yexiaotong

机构信息

Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China.

出版信息

Materials (Basel). 2025 Jun 12;18(12):2778. doi: 10.3390/ma18122778.

Abstract

The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851-0.934 THz and the K' valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757-0.996 THz and 1.426-1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation.

摘要

光通信和传感技术的快速发展显著增加了对先进可调谐光谱系统的需求。本研究提出了一种利用谷拓扑光子晶体边缘态的拓扑保护特性的双波段太赫兹传输与操控方法。所设计的结构有助于在0.851 - 0.934太赫兹范围内激发K谷,在1.604至1.686太赫兹范围内激发K'谷,同时还展示了反常折射和双折射。通过动量匹配计算得出的发射角,实现了单波发射和双波发射之间的转换,并允许精确的角度控制。液晶材料NJU-LDn-4的引入使得在变化的电场下能够连续调谐双波段光谱范围,分别将工作频带拓宽到0.757 - 0.996太赫兹和1.426 - 1.798太赫兹范围。这些发现表明在可调谐滤波器设计、光通信、光子计算、光学传感和高分辨率成像等方面具有广阔的应用前景,特别是在需要精确控制光谱特性和光传播的新型光学器件中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea3/12194887/1a936084fff6/materials-18-02778-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验