Qingdao New Energy Shandong Laboratory, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
University of Chinese Academy of Sciences, Beijing, China.
Glob Chang Biol. 2024 Nov;30(11):e17570. doi: 10.1111/gcb.17570.
Long-term carbon sequestration by the ocean's recalcitrant dissolved organic carbon (RDOC) pool regulates global climate. Algae and bacteria interactively underpin RDOC formation. However, on the long-term scales, the influence of their persistent interactions close to in situ state on ocean RDOC dynamics and accumulation remains unclear, limiting our understanding of the oceanic RDOC pool formation and future trends under global change. We show that a Synechococcus-bacteria interaction model system viable over 720 days gradually accumulated high DOC concentrations up to 84 mg L. Concurrently, the DOC inertness increased with the RDOC ratio reaching > 50%. The identified Synechococcus-bacteria-driven RDOC molecules shared similarity with over half of those from pelagic ocean DOC. Importantly, we provide direct genetic and metabolite evidence that alongside the continuous transformation of algal carbon by bacteria to generate RDOC, Synechococcus itself also directly synthesized and released RDOC molecules, representing a neglected RDOC source with ~0.2-1 Gt y in the ocean. However, we found that although ocean warming (+4°C) can promote algal and bacterial growth and DOC release, it destabilizes and reduces RDOC reservoirs, jeopardizing the ocean's carbon sequestration capacity. This study unveils the previously underestimated yet significant role of algae and long-term algae-bacteria interactions in ocean carbon sequestration and its vulnerability to ocean warming.
海洋中难降解的溶解有机碳(RDOC)库的长期碳封存作用调节着全球气候。藻类和细菌相互作用,共同支撑着 RDOC 的形成。然而,在长时间尺度上,它们在接近原位状态下持久相互作用对海洋 RDOC 动态和积累的影响仍不清楚,这限制了我们对海洋 RDOC 库形成和全球变化下未来趋势的理解。我们发现,一个可行的聚球藻-细菌相互作用模型系统能够在 720 多天的时间里逐渐积累高浓度的 DOC,最高可达 84mg/L。与此同时,DOC 的惰性随着 RDOC 比例的增加而增加,达到了>50%。鉴定出的聚球藻-细菌驱动的 RDOC 分子与浮游海洋 DOC 中的一半以上分子具有相似性。重要的是,我们提供了直接的遗传和代谢证据,表明在细菌不断将藻类碳转化为 RDOC 的同时,聚球藻本身也直接合成并释放 RDOC 分子,这代表了海洋中被忽视的 RDOC 来源,其通量约为 0.2-1Gt y。然而,我们发现,尽管海洋变暖(+4°C)可以促进藻类和细菌的生长和 DOC 的释放,但它会破坏和减少 RDOC 储量,危及海洋的碳封存能力。本研究揭示了藻类和长期藻类-细菌相互作用在海洋碳封存及其对海洋变暖脆弱性方面的作用,这一作用此前被低估了。