Zhang Tongze, Chung Tammy, Dey Anind, Bae Sang Won
Stevens Institute of Technology, Hoboken, New Jersey.
Rutgers University, Newark, New Jersey.
2024 Int Conf Act Behav Comput (2024). 2024 May;2024. doi: 10.1109/abc61795.2024.10652070. Epub 2024 Sep 3.
As an increasing number of states adopt more permissive cannabis regulations, the necessity of gaining a comprehensive understanding of cannabis's effects on young adults has grown exponentially, driven by its escalating prevalence of use. By leveraging popular eXplainable Artificial Intelligence (XAI) techniques such as SHAP (SHapley Additive exPlanations), rule-based explanations, intrinsically interpretable models, and counterfactual explanations, we undertake an exploratory but in-depth examination of the impact of cannabis use on individual behavioral patterns and physiological states. This study explores the possibility of facilitating algorithmic decision-making by combining interpretable artificial intelligence (XAI) techniques with sensor data, with the aim of providing researchers and clinicians with personalized analyses of cannabis intoxication behavior. SHAP analyzes the importance and quantifies the impact of specific factors such as environmental noise or heart rate, enabling clinicians to pinpoint influential behaviors and environmental conditions. SkopeRules simplify the understanding of cannabis use for a specific activity or environmental use. Decision trees provide a clear visualization of how factors interact to influence cannabis consumption. Counterfactual models help identify key changes in behaviors or conditions that may alter cannabis use outcomes, to guide effective individualized intervention strategies. This multidimensional analytical approach not only unveils changes in behavioral and physiological states after cannabis use, such as frequent fluctuations in activity states, nontraditional sleep patterns, and specific use habits at different times and places, but also highlights the significance of individual differences in responses to cannabis use. These insights carry profound implications for clinicians seeking to gain a deeper understanding of the diverse needs of their patients and for tailoring precisely targeted intervention strategies. Furthermore, our findings highlight the pivotal role that XAI technologies could play in enhancing the transparency and interpretability of Clinical Decision Support Systems (CDSS), with a particular focus on substance misuse treatment. This research significantly contributes to ongoing initiatives aimed at advancing clinical practices that aim to prevent and reduce cannabis-related harms to health, positioning XAI as a supportive tool for clinicians and researchers alike.
随着越来越多的州采用更为宽松的大麻监管政策,鉴于大麻使用的日益普遍,全面了解大麻对年轻人的影响变得愈发迫切。通过利用诸如SHAP(Shapley加性解释)、基于规则的解释、内在可解释模型和反事实解释等流行的可解释人工智能(XAI)技术,我们对大麻使用对个体行为模式和生理状态的影响进行了探索性但深入的研究。本研究探讨了将可解释人工智能(XAI)技术与传感器数据相结合以促进算法决策的可能性,旨在为研究人员和临床医生提供对大麻中毒行为的个性化分析。SHAP分析特定因素(如环境噪音或心率)的重要性并量化其影响,使临床医生能够确定有影响力的行为和环境条件。SkopeRules简化了对特定活动或环境下大麻使用的理解。决策树清晰地展示了各种因素如何相互作用以影响大麻消费。反事实模型有助于识别可能改变大麻使用结果的行为或条件的关键变化,以指导有效的个性化干预策略。这种多维度分析方法不仅揭示了大麻使用后行为和生理状态的变化,如活动状态的频繁波动、非传统睡眠模式以及不同时间和地点的特定使用习惯,还强调了个体对大麻使用反应差异的重要性。这些见解对于寻求更深入了解患者多样化需求并制定精准靶向干预策略的临床医生具有深远意义。此外,我们的研究结果凸显了XAI技术在提高临床决策支持系统(CDSS)的透明度和可解释性方面可能发挥的关键作用,尤其侧重于药物滥用治疗。这项研究为旨在推进旨在预防和减少大麻相关健康危害的临床实践的正在进行的举措做出了重大贡献,将XAI定位为临床医生和研究人员的支持工具。