Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy.
Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
Front Immunol. 2024 Nov 12;15:1447567. doi: 10.3389/fimmu.2024.1447567. eCollection 2024.
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
近年来,利用纳米粒子(NPs)调节中枢神经系统(CNS)内的免疫反应取得了重大进展,为神经疾病的纳米治疗干预提供了新的机会。NPs 可以作为免疫调节剂的载体或传递核酸治疗药物的平台,以调节基因表达和调节免疫反应。几项研究表明,NP 介导的免疫调节在神经疾病的临床前模型中是有效的,包括多发性硬化症、中风、阿尔茨海默病和帕金森病。虽然仍然存在挑战,但 NPs 工程和设计的进步导致了使用多种策略开发 NPs 的发展,以克服这些挑战。纳米-生物与免疫系统的相互作用是将 NPs 概念化为在 CNS 中有效发挥纳米治疗作用的关键。生物分子冠在决定 NPs 在 CNS 中的行为和免疫识别方面起着关键作用,使研究人员有机会优化 NPs 的设计和表面修饰,以最小化免疫原性并增强生物相容性。在这里,我们回顾了 NPs 与 CNS 免疫系统的相互作用,重点讨论了 NPs 的免疫监视、NP 诱导的免疫重编程以及生物分子冠对 NPs 在 CNS 免疫反应中的行为的影响。将 NPs 整合到 CNS 纳米治疗中为解决急性和慢性神经状况和病理的复杂挑战提供了有前途的机会,也为预防和康复医学提供了机会。通过利用纳米-生物免疫界面并了解生物分子冠的意义,研究人员可以为广泛的 CNS 疾病开发靶向、安全和有效的纳米治疗干预措施,以改善治疗和康复效果。这些进展有可能彻底改变神经疾病的治疗格局,为未来改善患者护理和生活质量提供有希望的解决方案。
Acc Chem Res. 2021-1-19
Biomed Pharmacother. 2021-11
J Drug Target. 2018-10-18
Curr Pharm Des. 2025-3-20
Int J Mol Sci. 2020-8-23
Colloids Surf B Biointerfaces. 2014-12-1
Nat Rev Neurosci. 2008-6
Adv Drug Deliv Rev. 2024-1
BME Front. 2023-3-31
Signal Transduct Target Ther. 2023-9-22
J Nanobiotechnology. 2023-8-19
Nanoscale. 2023-9-14
Int J Nanomedicine. 2023