Suppr超能文献

具有潜在链路类型异质性的图上联合节点分类

Federated Node Classification over Graphs with Latent Link-type Heterogeneity.

作者信息

Xie Han, Xiong Li, Yang Carl

机构信息

Emory University, Atlanta, GA, United States.

出版信息

Proc Int World Wide Web Conf. 2023;2023:556-566. doi: 10.1145/3543507.3583471. Epub 2023 Apr 30.

Abstract

Federated learning (FL) aims to train powerful and generalized global models without putting distributed data together, which has been shown effective in various domains of machine learning. The non-IIDness of data across local clients has been a major challenge for FL. In graphs, one specifically important perspective of non-IIDness is manifested in the link-type heterogeneity underlying homogeneous graphs- the seemingly uniform links captured in most real-world networks can carry different levels of homophily or semantics of relations, while the exact sets and distributions of such latent link-types can further differ across local clients. Through our preliminary data analysis, we are motivated to design a new graph FL framework that can simultaneously discover latent link-types and model message-passing w.r.t. the discovered link-types through the collaboration of distributed local clients. Specifically, we propose a framework FedLit that can dynamically detect the latent link-types during FL via an EM-based clustering algorithm and differentiate the message-passing through different types of links via multiple convolution channels. For experiments, we synthesize multiple realistic datasets of graphs with latent heterogeneous link-types from real-world data, and partition them with different levels of link-type heterogeneity. Comprehensive experimental results and in-depth analysis have demonstrated both superior performance and rational behaviors of our proposed techniques.

摘要

联邦学习(FL)旨在在不将分布式数据集中在一起的情况下训练强大且通用的全局模型,这已在机器学习的各个领域中显示出有效性。跨本地客户端的数据非独立同分布一直是联邦学习的主要挑战。在图中,非独立同分布的一个特别重要的方面体现在同构图潜在的链接类型异质性上——大多数现实世界网络中捕获的看似统一的链接可能具有不同程度的同质性或关系语义,而这种潜在链接类型的确切集合和分布在不同本地客户端之间可能进一步不同。通过我们的初步数据分析,我们受启发设计了一种新的图联邦学习框架,该框架可以通过分布式本地客户端的协作同时发现潜在链接类型并针对发现的链接类型对消息传递进行建模。具体而言,我们提出了一个名为FedLit的框架,它可以在联邦学习期间通过基于期望最大化(EM)的聚类算法动态检测潜在链接类型,并通过多个卷积通道区分不同类型链接的消息传递。为了进行实验,我们从真实世界数据中合成了多个具有潜在异构链接类型的图的现实数据集,并以不同程度的链接类型异质性对它们进行划分。综合实验结果和深入分析证明了我们提出的技术具有卓越的性能和合理的行为。

相似文献

1
Federated Node Classification over Graphs with Latent Link-type Heterogeneity.具有潜在链路类型异质性的图上联合节点分类
Proc Int World Wide Web Conf. 2023;2023:556-566. doi: 10.1145/3543507.3583471. Epub 2023 Apr 30.
3
muxGNN: Multiplex Graph Neural Network for Heterogeneous Graphs.muxGNN:用于异构图的多路复用图神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):11067-11078. doi: 10.1109/TPAMI.2023.3263079. Epub 2023 Aug 7.
5
Clustered Federated Learning in Heterogeneous Environment.异构环境下的聚类联邦学习
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12796-12809. doi: 10.1109/TNNLS.2023.3264740. Epub 2024 Sep 3.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验