Jimenez Esther M, Nguyen Carlson, Shakeel Ahmad, Tesoriero Robert, Charrier Marimikel, Stull Alanna, Ajo-Franklin Caroline M
Department of BioSciences, Rice University, Houston, Texas 77005, United States.
Department of Aerospace Structures and Materials, Delft University of Technology, Delft 2629 HS, Netherlands.
ACS Synth Biol. 2024 Dec 20;13(12):3936-3947. doi: 10.1021/acssynbio.4c00336. Epub 2024 Nov 27.
The field of engineering living materials (ELMs) seeks to engineer cells to form macroscopic materials with tailorable structures and properties. While the rheological properties of ELMs have been altered using synthetic biology methodology, the relationships connecting their sequence, structural, and rheological properties remain to be elucidated. Recently, our lab created centimeter-scale ELMs from that offer a platform to investigate this paradigm. Here, we explore how changing the elastin-like polypeptide (ELP) length within the protein matrix of this ELM impacts its microstructure and viscoelastic behavior. We demonstrate that shortening ELP produces fibers almost 2× thicker than other variants, resulting in a stiffer material at rest. Interestingly, the midlength ELP forms a complex structure with globules and multidirectional fibers with increased yield stress under flow conditions. Lengthening ELP creates thinner strands between cells with similar storage and loss moduli to those of the midlength ELP. This study begins to elucidate sequence-structure-property relationships in these ELMs and shows that they are complex with few parallels to other biocomposite models. Furthermore, it highlights that fine-tuning genetic sequences can create significant differences in rheological properties, uncovering new design principles of ELMs.
工程活材料(ELMs)领域致力于对细胞进行工程改造,以形成具有可定制结构和特性的宏观材料。虽然已经使用合成生物学方法改变了ELMs的流变特性,但其序列、结构和流变特性之间的关系仍有待阐明。最近,我们实验室利用[具体材料]创建了厘米级的ELMs,为研究这一范式提供了一个平台。在这里,我们探讨了改变这种ELM蛋白质基质中类弹性蛋白多肽(ELP)的长度如何影响其微观结构和粘弹性行为。我们证明,缩短ELP会产生比其他变体几乎厚2倍的纤维,从而使材料在静止时更硬。有趣的是,中等长度的ELP在流动条件下会形成一种由小球和多向纤维组成的复杂结构,屈服应力增加。延长ELP会在细胞之间形成更细的链,其储能模量和损耗模量与中等长度的ELP相似。这项研究开始阐明这些ELMs中的序列-结构-特性关系,并表明它们很复杂,与其他生物复合材料模型几乎没有相似之处。此外,它强调微调基因序列可以在流变特性上产生显著差异,揭示了ELMs的新设计原则。