Department of Biosciences, Rice University, Houston, TX, USA.
Systems, Synthetic and Physical Biology PhD program, Rice University, Houston, TX, USA.
Nat Commun. 2022 Sep 21;13(1):5544. doi: 10.1038/s41467-022-33191-2.
Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein. This protein formed a de novo matrix and assembled cells into centimeter-scale ELMs. Discovery of design and assembly principles allowed us to tune the composition, mechanical properties, and catalytic function of these ELMs. This work provides genetic tools, design and assembly rules, and a platform for growing ELMs with control over both matrix and cellular structure and function.
工程化活体材料(ELMs)将活细胞嵌入生物聚合物基质中,以创造具有定制功能的材料。虽然使用从头开始的基质进行宏观 ELMs 的自下而上组装可以对材料特性进行最大程度的控制,但我们缺乏对遗传编码可导致集体自组织的蛋白质基质的能力。在这里,我们报告了能够展示和分泌自我相互作用蛋白的新月柄杆菌细胞中 ELMs 的生长情况。该蛋白形成了一种新的基质,并将细胞组装成厘米级的 ELMs。对设计和组装原理的发现使我们能够调整这些 ELMs 的组成、机械性能和催化功能。这项工作提供了遗传工具、设计和组装规则,以及一个具有对基质和细胞结构和功能进行控制的 ELMs 生长平台。