So Gerald C, Lu Jessica Bo Li, Koyama Sachiko, Cheng Ying-Hua, Gisch Debora L, McClara Kelsey, Dexter Paul R, Sharfuddin Asif A, Etkins Jumar, Tillman Emma M, Beamon Travis R, Cowsert Zachary, Stuart Jennifer S, Desta Zeruesenay, Eadon Michael T
Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Clin Pharmacol Ther. 2025 Mar;117(3):716-723. doi: 10.1002/cpt.3504. Epub 2024 Nov 27.
One in six Americans uses cannabidiol-based or cannabis-derived products. Cannabidiol is a substrate of CYP3A, but its role as a potential CYP3A inhibitor remains unclear. We hypothesized that cannabidiol would inhibit CYP3A-mediated metabolism of tacrolimus. This report is an interim analysis of an open-label, three-period, fixed-sequence, crossover study in healthy participants. Participants first received a single dose of tacrolimus 5 mg orally. After washout, participants later received cannabidiol titrated to 5 mg/kg twice daily for 14 days to reach a steady state, followed by a second single dose of tacrolimus 5 mg orally. Tacrolimus concentrations in whole blood were measured by UHPLC-MS/MS method. Pharmacokinetic parameters were calculated by noncompartmental analysis. Twelve participants completed all periods of the study. The maximum concentration (C) of tacrolimus increased 4.2-fold (P < 0.0001) with cannabidiol (40.2 ± 13.5 ng/mL) compared with without cannabidiol (9.85 ± 4.63 ng/mL). The area under the concentration-vs.-time curve (AUC) increased 3.1-fold (P < 0.0001). No change in half-life (t) was observed. This study demonstrates that cannabidiol increases tacrolimus exposure. Our data suggest the need for dose reduction in tacrolimus and frequent therapeutic dose monitoring in transplant patients taking cannabidiol concomitantly. Whether this observed interaction occurred due to the inhibition of CYP3A4 and/or CYP3A5 in the liver, intestine, or both, or intestinal drug transporters (e.g., p-glycoprotein) during the first-pass elimination remains to be elucidated.
六分之一的美国人使用基于大麻二酚或源自大麻的产品。大麻二酚是细胞色素P450 3A(CYP3A)的底物,但其作为潜在CYP3A抑制剂的作用仍不清楚。我们假设大麻二酚会抑制他克莫司的CYP3A介导的代谢。本报告是一项针对健康参与者的开放标签、三阶段、固定序列、交叉研究的中期分析。参与者首先口服单剂量5毫克他克莫司。洗脱期后,参与者随后接受大麻二酚,每天两次滴定至5毫克/千克,持续14天以达到稳态,然后再次口服单剂量5毫克他克莫司。通过超高效液相色谱-串联质谱法(UHPLC-MS/MS)测量全血中的他克莫司浓度。通过非房室分析计算药代动力学参数。12名参与者完成了研究的所有阶段。与未使用大麻二酚时(9.85±4.63纳克/毫升)相比,使用大麻二酚时(40.2±13.5纳克/毫升)他克莫司的最大浓度(C)增加了4.2倍(P<0.0001)。浓度-时间曲线下面积(AUC)增加了3.1倍(P<0.0001)。未观察到半衰期(t)的变化。本研究表明大麻二酚会增加他克莫司的暴露量。我们的数据表明,对于同时服用大麻二酚的移植患者,有必要减少他克莫司的剂量并频繁监测治疗剂量。这种观察到的相互作用是由于在肝脏、肠道或两者中抑制了CYP3A4和/或CYP3A5,还是在首过消除过程中抑制了肠道药物转运蛋白(如P-糖蛋白)所致,仍有待阐明。