Yang Hanjun, Mandal Sagarmoy, Li Bowen, Ghosh Tushar Kanti, Peterson Jonas Mark, Guo Peijun, Dou Letian, Chen Ming, Huang Libai
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
J Am Chem Soc. 2024 Dec 11;146(49):33928-33936. doi: 10.1021/jacs.4c12643. Epub 2024 Nov 27.
Hybrid organic-inorganic semiconductors with strong electron-phonon interactions provide a programmable platform for developing a variety of electronic, optoelectronic, and quantum materials by controlling these interactions. However, in current hybrid semiconductors such as halide perovskites, anharmonic vibrations with rapid dephasing hinder the ability to coherently manipulate phonons. Here, we report the observation of long-lived coherent phonons in lead organic chalcogenides (LOCs), a new family of hybrid two-dimensional semiconductors. These materials feature harmonic phonon dynamics despite distorted lattices, combining long phonon dephasing times with tunable semiconducting properties. A dephasing time -up to 75 ps at 10 K, with up to ∼500 cycles of phonon oscillation between scattering events, was observed, corresponding to a dimensionless harmonicity parameter that is more than an order of magnitude larger than that of halide perovskites. The phonon dephasing time is significantly influenced by anharmonicity and centrosymmetry, both of which can be tuned through the design of the organic ligands enabled by the direct bonding between the organic and inorganic motifs. This research opens new opportunities for the manipulation of electronic properties with coherent phonons in hybrid semiconductors.
具有强电子-声子相互作用的有机-无机杂化半导体为通过控制这些相互作用来开发各种电子、光电子和量子材料提供了一个可编程平台。然而,在当前的杂化半导体(如卤化物钙钛矿)中,具有快速退相的非谐振动阻碍了对声子进行相干操纵的能力。在此,我们报告了在铅有机硫族化物(LOCs)中观察到长寿命相干声子,这是一类新型的二维杂化半导体。尽管晶格发生畸变,但这些材料具有谐和的声子动力学特性,将长的声子退相时间与可调节的半导体性质相结合。在10K下观察到退相时间长达75皮秒,在散射事件之间声子振荡多达约500个周期,这对应于一个无量纲谐和参数,该参数比卤化物钙钛矿的谐和参数大一个数量级以上。声子退相时间受到非谐性和中心对称性的显著影响,这两者都可以通过有机配体的设计来调节,而有机配体的设计是由有机和无机基团之间的直接键合实现的。这项研究为利用杂化半导体中的相干声子操纵电子性质开辟了新的机会。