Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2418024121. doi: 10.1073/pnas.2418024121. Epub 2024 Nov 27.
Spinal motor neuron (MN) dysfunction is the cause of a number of clinically significant movement disorders. Despite the recent approval of gene therapeutics targeting these MN-related disorders, there are no viral delivery mechanisms that achieve MN-restricted transgene expression. In this study, chromatin accessibility profiling of genetically defined mouse MNs was used to identify candidate cis-regulatory elements (CREs) capable of driving MN-selective gene expression. Subsequent testing of these candidates identified two CREs that confer MN-selective gene expression in the spinal cord as well as reduced off-target expression in dorsal root ganglia. Within one of these candidate elements, we identified a compact core transcription factor (TF)-binding region that drives MN-selective gene expression. Finally, we demonstrated that selective spinal cord expression driven by this mouse CRE is preserved in non-human primates. These findings suggest that cell-type-selective viral reagents in which cell-type-selective CREs drive restricted gene expression will be valuable research tools in mice and other mammalian species, with potentially significant therapeutic value in humans.
脊髓运动神经元 (MN) 功能障碍是许多具有临床意义的运动障碍的原因。尽管最近批准了针对这些与 MN 相关疾病的基因治疗方法,但尚无实现 MN 特异性转基因表达的病毒传递机制。在这项研究中,对遗传定义的小鼠 MN 的染色质可及性进行了分析,以鉴定能够驱动 MN 特异性基因表达的候选顺式调控元件 (CRE)。对这些候选物的后续测试鉴定了两个 CRE,它们可在脊髓中赋予 MN 选择性基因表达,并减少在背根神经节中的脱靶表达。在其中一个候选元件内,我们鉴定了一个紧凑的核心转录因子 (TF) 结合区域,可驱动 MN 特异性基因表达。最后,我们证明了由该小鼠 CRE 驱动的选择性脊髓表达在非人类灵长类动物中得以保留。这些发现表明,在小鼠和其他哺乳动物物种中,具有细胞类型特异性 CRE 驱动受限基因表达的细胞类型特异性病毒试剂将是有价值的研究工具,在人类中具有潜在的重要治疗价值。