Suppr超能文献

用于混合现实辅助手术的通用校准框架。

A universal calibration framework for mixed-reality assisted surgery.

作者信息

Madani Sepehr, Sayadi Amir, Turcotte Robert, Cecere Renzo, Aoude Ahmed, Hooshiar Amir

机构信息

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal QC H3G 1A4, Canada.

Division of Orthopedic Surgery, Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal QC H3G 1A4, Canada.

出版信息

Comput Methods Programs Biomed. 2025 Feb;259:108470. doi: 10.1016/j.cmpb.2024.108470. Epub 2024 Nov 12.

Abstract

BACKGROUND

Mixed-reality-assisted surgery has become increasingly prominent, offering real-time 3D visualization of target anatomy such as tumors. These systems facilitate translating preoperative 3D surgical plans to the patient's body intraoperatively and allow for interactive modifications based on the patient's real-time conditions. However, achieving sub-millimetre accuracy in mixed-reality (MR) visualization and interaction is crucial to mitigate device-related risks and enhance surgical precision.

OBJECTIVE

Given the critical role of camera calibration in hologram-to-patient anatomy registration, this study aims to develop a new device-agnostic and robust calibration method capable of achieving sub-millimetre accuracy, addressing the prevalent uncertainties associated with MR camera-to-world calibration.

METHODS

We utilized the precision of surgical navigation systems (NAV) to address the hand-eye calibration problem, thereby localizing the MR camera within a navigated surgical scene. The proposed calibration method was integrated into a representative surgery system and subjected to rigorous testing across various 2D and 3D camera trajectories that simulate surgeon head movements.

RESULTS

The calibration method demonstrated positional errors as low as 0.2 mm in spatial trajectories, with a standard error also at 0.2 mm, underscoring its robustness against camera motion. This accuracy complies with the accuracy and stability requirements essential for surgical applications.

CONCLUSION

The proposed fiducial-based hand-eye calibration method effectively incorporates the accuracy and reliability of surgical navigation systems into MR camera systems used in intraoperative applications. This integration facilitates high precision in surgical navigation, proving critical for enhancing surgical outcomes in mixed-reality-assisted procedures.

摘要

背景

混合现实辅助手术日益突出,可提供肿瘤等目标解剖结构的实时3D可视化。这些系统有助于将术前3D手术计划术中转化到患者身体上,并允许根据患者实时情况进行交互式修改。然而,在混合现实(MR)可视化和交互中实现亚毫米级精度对于降低设备相关风险和提高手术精度至关重要。

目的

鉴于相机校准在全息图到患者解剖结构配准中的关键作用,本研究旨在开发一种新的与设备无关且稳健的校准方法,能够实现亚毫米级精度,解决与MR相机到世界校准相关的普遍不确定性问题。

方法

我们利用手术导航系统(NAV)的精度来解决手眼校准问题,从而在导航手术场景中定位MR相机。所提出的校准方法被集成到一个有代表性的手术系统中,并在模拟外科医生头部运动的各种2D和3D相机轨迹上进行了严格测试。

结果

该校准方法在空间轨迹上显示出低至0.2毫米的位置误差,标准误差也为0.2毫米,突出了其对相机运动的稳健性。这种精度符合手术应用所需的精度和稳定性要求。

结论

所提出的基于基准的手眼校准方法有效地将手术导航系统的精度和可靠性纳入术中应用的MR相机系统。这种集成有助于手术导航的高精度,证明对提高混合现实辅助手术的手术效果至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验