IEEE J Biomed Health Inform. 2022 Feb;26(2):910-921. doi: 10.1109/JBHI.2021.3088442. Epub 2022 Feb 4.
Visual augmented reality (AR) has the potential to improve the accuracy, efficiency and reproducibility of computer-assisted orthopaedic surgery (CAOS). AR Head-mounted displays (HMDs) further allow non-eye-shift target observation and egocentric view. Recently, a markerless tracking and registration (MTR) algorithm was proposed to avoid the artificial markers that are conventionally pinned into the target anatomy for tracking, as their use prolongs surgical workflow, introduces human-induced errors, and necessitates additional surgical invasion in patients. However, such an MTR-based method has neither been explored for surgical applications nor integrated into current AR HMDs, making the ergonomic HMD-based markerless AR CAOS navigation hard to achieve. To these aims, we present a versatile, device-agnostic and accurate HMD-based AR platform. Our software platform, supporting both video see-through (VST) and optical see-through (OST) modes, integrates two proposed fast calibration procedures using a specially designed calibration tool. According to the camera-based evaluation, our AR platform achieves a display error of 6.31 ± 2.55 arcmin for VST and 7.72 ± 3.73 arcmin for OST. A proof-of-concept markerless surgical navigation system to assist in femoral bone drilling was then developed based on the platform and Microsoft HoloLens 1. According to the user study, both VST and OST markerless navigation systems are reliable, with the OST system providing the best usability. The measured navigation error is 4.90 ± 1.04 mm, 5.96 ± 2.22 for the VST system, and 4.36 ± 0.80 mm, 5.65 ± 1.42 for the OST system.
视觉增强现实(AR)有潜力提高计算机辅助骨科手术(CAOS)的准确性、效率和可重复性。AR 头戴式显示器(HMD)进一步允许非眼移目标观察和自我中心视图。最近,提出了一种无标记跟踪和配准(MTR)算法,以避免常规固定在目标解剖结构上用于跟踪的人工标记,因为它们的使用会延长手术流程,引入人为误差,并需要在患者中进行额外的手术入侵。然而,这种基于 MTR 的方法尚未被探索用于手术应用,也未集成到当前的 AR HMD 中,使得基于人体工程学 HMD 的无标记 AR CAOS 导航难以实现。为此,我们提出了一种通用、与设备无关且精确的基于 HMD 的 AR 平台。我们的软件平台支持视频透视(VST)和光透视(OST)模式,集成了使用专门设计的校准工具的两种快速校准程序。根据基于相机的评估,我们的 AR 平台在 VST 模式下的显示误差为 6.31±2.55 弧分,在 OST 模式下的显示误差为 7.72±3.73 弧分。然后,根据该平台和 Microsoft HoloLens 1 开发了一种用于辅助股骨钻孔的无标记手术导航系统。根据用户研究,VST 和 OST 无标记导航系统都是可靠的,OST 系统提供了最佳的可用性。测量的导航误差分别为 VST 系统的 4.90±1.04 毫米和 5.96±2.22 毫米,OST 系统的 4.36±0.80 毫米和 5.65±1.42 毫米。
IEEE J Biomed Health Inform. 2022-2
Int J Comput Assist Radiol Surg. 2020-11
Sensors (Basel). 2024-7-22
IEEE Trans Vis Comput Graph. 2022-7
Int J Comput Assist Radiol Surg. 2019-4-23
Int J Comput Assist Radiol Surg. 2024-8
Sensors (Basel). 2020-3-13
IEEE Trans Vis Comput Graph. 2022-3
Mayo Clin Proc Digit Health. 2025-4-16
Healthc Technol Lett. 2024-4-2
Sensors (Basel). 2024-3-1
Int J Environ Res Public Health. 2023-2-22