Alsiraey Nouf, Dewald Howard D
Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia.
Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
J Inorg Biochem. 2025 Feb;263:112785. doi: 10.1016/j.jinorgbio.2024.112785. Epub 2024 Nov 26.
Nitric oxide (NO) is an essential inorganic signaling molecule produced by constitutive NO synthase (cNOS) in the neurological system. Under pathological conditions, NO rapidly reacts with superoxide (O) to generate peroxynitrite (ONOO). Elevated ONOO concentrations induce nitroxidative stress, potentially contributing to numerous pathological processes as observed in neurodegenerative diseases including Alzheimer's disease (AD). Metalloporphyrin nanosensors, (200-300 nm diameter), were applied to quantify the NO/ONOO balance produced by a single human neural progenitor cell (hNPC), in situ. These nanosensors, positioned in proximity of 4-5 ± 1 μm from the hNPCs membrane, enabled real-time measurement of NO and ONOO concentrations following calcium ionophore (CaI) stimulation. The ratio of NO to ONOO concentration ([NO]/[ONOO]) was established for the purpose of quantifying nitroxidative stress levels. Normal hNPCs produced a maximum of 107 ± 1 nmol/L of NO and 451 ± 7 nmol/L of ONOO, yielding a [NO]/[ONOO] ratio of 0.25 ± 0.005. In contrast, the model of the dysfunctional hNPCs, for long-term (48 h) amyloid-beta 42 (Aβ) exposure significantly altered NO/ONOO production. The NO level decreased to 14 ± 0.1 nmol/L, while ONOO increased to 843 ± 0.8 nmol/L, resulting in a 94 % reduction of the [NO]/[ONOO] ratio to 0.016 ± 0.0001. The [NO]/[ONOO] ratio is determined by this work as a possible biomarker of nNOS efficiency and hNPC dysfunction, with implications for neurodegenerative disorders such as AD. Promising applications in the early medical diagnosis of neurological illnesses, electrochemical metalloporphyrin nanosensors demonstrate efficacy in real-time nitroxidative stress monitoring.
一氧化氮(NO)是神经系统中组成型一氧化氮合酶(cNOS)产生的一种重要无机信号分子。在病理条件下,NO迅速与超氧化物(O)反应生成过氧亚硝酸盐(ONOO)。升高的ONOO浓度会诱导氮氧化应激,这可能导致包括阿尔茨海默病(AD)在内的神经退行性疾病中观察到的许多病理过程。金属卟啉纳米传感器(直径200 - 300纳米)被用于原位定量单个人类神经祖细胞(hNPC)产生的NO/ONOO平衡。这些纳米传感器位于距离hNPC细胞膜4 - 5±1微米的位置,能够在钙离子载体(CaI)刺激后实时测量NO和ONOO的浓度。为了量化氮氧化应激水平,确定了NO与ONOO浓度的比值([NO]/[ONOO])。正常hNPC产生的NO最高为107±1纳摩尔/升,ONOO为451±7纳摩尔/升,[NO]/[ONOO]比值为0.25±0.005。相比之下,功能失调的hNPC模型在长期(48小时)暴露于淀粉样β蛋白42(Aβ)后,NO/ONOO的产生显著改变。NO水平降至14±0.1纳摩尔/升,而ONOO增加到843±0.8纳摩尔/升,导致[NO]/[ONOO]比值降低94%至0.016±0.0001。这项工作确定[NO]/[ONOO]比值可能是nNOS效率和hNPC功能失调的生物标志物,对AD等神经退行性疾病具有重要意义。电化学金属卟啉纳米传感器在神经疾病的早期医学诊断中具有广阔应用前景,证明了其在实时监测氮氧化应激方面的有效性。