文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Immunoprotective effect of chitosan nanoparticles with different particle sizes against H9N2 avian influenza infection.

作者信息

Xu Shangen, Zhao Zhi, Sun Chenxi, Ji Yile, Luan Qingshuang, Zhang Qihong, Jin Zheng, Zhao Kai

机构信息

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou Zhejiang 318000, China.

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou Zhejiang 318000, China.

出版信息

Poult Sci. 2025 Jan;104(1):104559. doi: 10.1016/j.psj.2024.104559. Epub 2024 Nov 22.


DOI:10.1016/j.psj.2024.104559
PMID:39603189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11635735/
Abstract

H9N2 is the most common avian influenza virus (AIV), which causes significant losses in chickens. Safe and effective vaccines are crucial for the prevention of H9N2 AIVs. Chitosan nanoparticles, as novel adjuvants, enhance vaccine immunity and biocompatibility; however, the impact of particle size on the immunological effects remains underexplored. To solve these problems and to prepare an efficient novel H9N2 vaccine, we constructed four N-2-HACC/CMCS NPs (NHC NPs) of different particle sizes (165.6 ± 12.0 nm, 272.5 ± 7.0 nm, 343.2 ± 8.0 nm, and 443.5 ± 15.0 nm). Subsequent in vivo immunogenicity screening revealed that H9N2 with the 272.5 ± 7.0 nm NHC NPs vaccine group induced higher levels of neutralizing antibodies in the early stage of the immune response, while the 343.2 ± 8.0 nm NHC NPs vaccine group induced higher levels of neutralizing antibodies in the late stages of the immune response. Subsequently, the results of the optimal particle size combination screening revealed that more neutralizing antibodies were induced when the NHC NPs particle size combination of 272.5 ± 7.0 nm:343.2 ± 8.0 nm ratio was 1.5:1. This optimal particle size combination for NP vaccines promoted lymphocyte proliferation, induced higher IgG2a/IgG1 ratios, and promoted the production of cytokines (i.e., IL-2, IL-4, and IFN-γ). Moreover, a mechanistic analysis revealed that the optimal NHC NPs combination triggered the activation of antigen presenting cells via TLR4 and participated in immune responses through the production of NO and TNF-α. Taken together, our study revealed that the optimal combination of NHC NPs may be a promising strategy against influenza viruses.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/86c07ff71130/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/6c5b489dce7b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/ab06903d5cf0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/0c32b1ad47bc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/143f6621d490/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/2a635e1093b9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/e172033bb7ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/86c07ff71130/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/6c5b489dce7b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/ab06903d5cf0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/0c32b1ad47bc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/143f6621d490/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/2a635e1093b9/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/e172033bb7ac/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e3/11635735/86c07ff71130/gr7.jpg

相似文献

[1]
Immunoprotective effect of chitosan nanoparticles with different particle sizes against H9N2 avian influenza infection.

Poult Sci. 2025-1

[2]
Improved cellular immune response induced by intranasal boost immunization with chitosan coated DNA vaccine against H9N2 influenza virus challenge.

Microb Pathog. 2024-10

[3]
Examination of the effects of virus inactivation methods on the induction of antibody- and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens.

Vaccine. 2018-5-28

[4]
Bursopentine as a novel immunoadjuvant enhances both humoral and cell-mediated immune responses to inactivated H9N2 Avian Influenza virus in chickens.

Clin Vaccine Immunol. 2011-9

[5]
A Comparison of Toll-Like Receptor 5 and 21 Ligands as Adjuvants for a Formaldehyde Inactivated H9N2 Avian Influenza Virus Vaccine in Chickens.

Viral Immunol. 2018-11

[6]
Delivery of dendritic cells targeting 3M2e-HA2 nanoparticles with a CpG adjuvant via lysosomal escape of Salmonella enhances protection against H9N2 avian influenza virus.

Poult Sci. 2025-1

[7]
Characterization of Immune Responses to an Inactivated Avian Influenza Virus Vaccine Adjuvanted with Nanoparticles Containing CpG ODN.

Viral Immunol. 2016-6

[8]
A Dose-Response Study of Inactivated Low Pathogenic Avian Influenza H9N2 Virus in Specific-Pathogen-Free and Commercial Broiler Chickens.

Avian Dis. 2016-5

[9]
Comparative Effectiveness of Two Oil Adjuvant-Inactivated Avian Influenza H9N2 Vaccines.

Avian Dis. 2016-5

[10]
H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals.

Vaccine. 2011-4-2

本文引用的文献

[1]
Size effect of mesoporous silica nanoparticles on regulating the immune effect of oral influenza split vaccine.

Colloids Surf B Biointerfaces. 2024-6

[2]
Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets.

Nat Commun. 2024-4-25

[3]
Size-Dependent Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance.

ACS Nano. 2023-11-14

[4]
An mRNA-based broad-spectrum vaccine candidate confers cross-protection against heterosubtypic influenza A viruses.

Emerg Microbes Infect. 2023-12

[5]
An immune-enhanced multivalent DNA nanovaccine to prevent H7 and H9 avian influenza virus in mice.

Int J Biol Macromol. 2023-11-1

[6]
Enhance immune response to H9 AIV DNA vaccine based on polygene expression and DGL nanoparticle encapsulation.

Poult Sci. 2023-10

[7]
Vaccine adjuvants: mechanisms and platforms.

Signal Transduct Target Ther. 2023-7-19

[8]
Development of an Inactivated Avian Influenza Virus Vaccine against Circulating H9N2 in Chickens and Ducks.

Vaccines (Basel). 2023-3-5

[9]
Protective Efficacy of Inactivated H9N2 Vaccine in Turkey Poults under Both Experimental and Field Conditions.

Vaccines (Basel). 2022-12-19

[10]
A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes.

Science. 2022-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索