Trojan Michael, Kanigowski Dominik, Bijoch Łukasz, Pękała Martyna, Legutko Diana, Beroun Anna, Bekisz Marek, Colom Luis V, Kodirov Sodikdjon A
Center for Biomedical Studies, Department of Biological Sciences, University of Texas at Brownsville, TX 78520, USA; University Medical Center Mainz, 55099 Mainz, Germany.
Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland.
Neuroscience. 2025 Jan 26;565:327-341. doi: 10.1016/j.neuroscience.2024.11.063. Epub 2024 Nov 26.
Similar to other brain regions, the neurons in the lateral septum (LS) are of heterogeneous populations. However, their resting membrane potential (RMP) on average is not too far apart. Cells were characterized based on biological markers by using brain slices, as under these in vitro conditions, neurons retain their morphologies. Since the LS neurons are not spontaneously excitable at RMP, the action potentials (APs) were evoked via injections of currents of moderate magnitude during the patch-clamp recordings. In coronal brain slices of rats, a smaller portion of neurons generated a train of APs of complex nature. In order to define the types of neurons with similar phenotypes, we subsequently used the four lines of td-Tomato transgenic mice. The brains of these mice express the promoter fluorophore td-Tomato and enhanced green fluorescent protein (eGFP). Therefore, recordings were conducted in a targeted manner in neurons expressing glutamic acid decarboxylase (GAD), parvalbumin (PV), somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). Similar spike phenotypes that we refer to as type III, in order to distinguish from AP in principal cells - type I and those in interneurons - type II, also exist in mice, substantiating a similitude among rodents. The type III AP is selectively triggered by Ca in GAD and SOM-positive neurons. Conclusions are supported by established pharmacologic tools, nimodipine, TTX, and ZD7288, a selective HCN channel antagonist.Collectively, these observations revitalize our knowledge from pioneering studies with regard to the brain of mammals in general and septal structures in particular.
与其他脑区相似,外侧隔(LS)中的神经元群体具有异质性。然而,它们的静息膜电位(RMP)平均相差不大。在脑片条件下,根据生物学标记对细胞进行表征,因为在这些体外条件下,神经元保留了它们的形态。由于LS神经元在RMP时不会自发兴奋,因此在膜片钳记录期间通过注入中等强度的电流来诱发动作电位(AP)。在大鼠的冠状脑片中,较小部分的神经元产生一系列性质复杂的AP。为了定义具有相似表型的神经元类型,我们随后使用了四系td-Tomato转基因小鼠。这些小鼠的大脑表达启动子荧光团td-Tomato和增强型绿色荧光蛋白(eGFP)。因此,在表达谷氨酸脱羧酶(GAD)、小白蛋白(PV)、生长抑素(SOM)或血管活性肠肽(VIP)的神经元中进行了靶向记录。我们将类似的尖峰表型称为III型,以便与主细胞中的AP(I型)和中间神经元中的AP(II型)区分开来,这种表型在小鼠中也存在,证实了啮齿动物之间的相似性。III型AP在GAD和SOM阳性神经元中由Ca选择性触发。既定的药理学工具尼莫地平、TTX和选择性HCN通道拮抗剂ZD7288支持了这些结论。总的来说,这些观察结果使我们对一般哺乳动物大脑尤其是隔区结构的开创性研究的认识得以更新。