Huh Carey Y L, Amilhon Bénédicte, Ferguson Katie A, Manseau Frédéric, Torres-Platas Susana G, Peach John P, Scodras Stephanie, Mechawar Naguib, Skinner Frances K, Williams Sylvain
Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada, Integrated Program in Neuroscience, McGill University, Montreal, Quebec H4H 1R3, Canada.
Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada, Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada.
J Neurosci. 2016 Jun 22;36(25):6605-22. doi: 10.1523/JNEUROSCI.3951-13.2016.
Theta oscillations are essential for learning and memory, and their generation requires GABAergic interneurons. To better understand how theta is generated, we explored how parvalbumin (PV) and somatostatin (SOM) interneurons in CA1 stratum oriens/alveus fire during hippocampal theta and investigated synaptic mechanisms underlying their behavior. Combining the use of transgenic mice to visually identify PV and SOM interneurons and the intact hippocampal preparation that can generate theta oscillations in vitro without cholinergic agonists, we performed simultaneous field and whole-cell recordings. We found that PV interneurons uniformly fire strongly phase-locked to theta, whereas SOM neurons are more heterogeneous with only a proportion of cells displaying tight phase-locking. Differences in phase-locking strength could be explained by disparity in excitatory inputs received; PV neurons received significantly larger EPSCs compared with SOM neurons, and the degree of phase-locking in SOM neurons was significantly correlated with the size of EPSCs. In contrast, IPSC amplitude did not differ between cell types. We determined that the local CA1 rhythm plays a more dominant role in driving CA1 interneuron firing than afferent inputs from the CA3. Last, we show that PV and strongly phase-locked SOM neurons fire near the peak of CA1 theta, under the tight control of excitatory inputs that arise at a specific phase of each theta cycle. These results reveal a fundamental mechanism of neuronal phase-locking and highlight an important role of excitation from the local network in governing firing behavior during rhythmic network states.
Rhythmic activity in the theta range (3-12 Hz) is important for proper functioning of the hippocampus, a brain area essential for learning and memory. To understand how theta rhythm is generated, we investigated how two types of inhibitory neurons, those that express parvalbumin and somatostatin, fire action potentials during theta in an in vitro preparation of the mouse hippocampus. We found that the amount of excitatory input they receive from the local network determines how closely their spikes follow the network theta rhythm. Our findings reveal an important role of local excitatory input in driving inhibitory neuron firing during rhythmic states and may have implications for diseases, such as epilepsy and Alzheimer's disease, which affect the hippocampus and related areas.
θ振荡对学习和记忆至关重要,其产生需要γ-氨基丁酸能中间神经元。为了更好地理解θ振荡是如何产生的,我们研究了海马θ振荡期间CA1原层/肺泡层中的小白蛋白(PV)和生长抑素(SOM)中间神经元的放电情况,并研究了其行为背后的突触机制。结合使用转基因小鼠来可视化识别PV和SOM中间神经元以及完整的海马制备物,该制备物可在无胆碱能激动剂的情况下在体外产生θ振荡,我们进行了同步场电位和全细胞记录。我们发现PV中间神经元一致地强烈放电,与θ振荡严格锁相,而SOM神经元则更为异质,只有一部分细胞表现出紧密锁相。锁相强度的差异可以通过所接收的兴奋性输入的差异来解释;与SOM神经元相比,PV神经元接收的兴奋性突触后电流(EPSC)明显更大,并且SOM神经元中的锁相程度与EPSC的大小显著相关。相比之下,抑制性突触后电流(IPSC)幅度在细胞类型之间没有差异。我们确定,局部CA1节律在驱动CA1中间神经元放电方面比来自CA3的传入输入发挥更主导的作用。最后,我们表明,PV和强锁相的SOM神经元在CA1 θ振荡的峰值附近放电,受到每个θ周期特定阶段出现的兴奋性输入的严格控制。这些结果揭示了神经元锁相的基本机制,并突出了局部网络的兴奋在调节节律性网络状态期间的放电行为中的重要作用。
θ范围内(3 - 12赫兹)的节律性活动对海马体的正常功能很重要,海马体是学习和记忆所必需的脑区。为了了解θ节律是如何产生的,我们研究了两种抑制性神经元,即表达小白蛋白和生长抑素的神经元,在小鼠海马体的体外制备物中θ振荡期间如何产生动作电位。我们发现它们从局部网络接收的兴奋性输入量决定了它们的尖峰与网络θ节律的跟随紧密程度。我们的发现揭示了局部兴奋性输入在节律性状态期间驱动抑制性神经元放电中的重要作用,并且可能对影响海马体及相关区域的疾病,如癫痫和阿尔茨海默病有影响。