Suppr超能文献

阳离子二聚化的局部涨落引发的零应变金属-绝缘体转变

Zero-Strain Metal-Insulator Transition by the Local Fluctuation of Cation Dimerization.

作者信息

Park Yunkyu, Sim Hyeji, Lee Sungwon, Park Won-Woo, Hwang Jaejin, Hur Pyeongkang, Lee Yujeong, Lee Dong Kyu, Song Kyung, Lee Jaekwang, Kwon Oh-Hoon, Choi Si-Young, Son Junwoo

机构信息

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37683, Republic of Korea.

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.

出版信息

Adv Mater. 2025 Jan;37(4):e2413546. doi: 10.1002/adma.202413546. Epub 2024 Nov 27.

Abstract

The coupled electronic and structural transitions in metal-insulator transition (MIT) hinder ultrafast switching and ultimate endurance. Decoupling these transitions and achieving a zero-strain electronic MIT can overcome the fundamental limitations of MIT in solid materials. Here, this study demonstrates that iso-valent Ti dopants in supercooled VO epitaxial films cause MIT with minimal hysteresis without changing unit-cell volume and crystal symmetry. The Ti dopants in the VO lattice locally alter the configuration of V-V pairs, where the long-range ordering in V-V pairs is disrupted, and the nano-domains of V-V dimers are formed. Strikingly, these local V-V dimers persist even above the electronic transition temperature (T), facilitating the zero-strain electronic MIT with nanoscale structural heterogeneity. The geometrically compatible interface between insulating and metallic phases drastically enhances switching speed and endurance during electrically and optically driven zero-strain MIT. This discovery offers a fresh perspective on the scientific understanding of MIT and the improved functionality in terms of device speed and reliability by decoupling electronic and structural transitions.

摘要

金属-绝缘体转变(MIT)中耦合的电子和结构转变阻碍了超快开关和最终耐久性。解耦这些转变并实现零应变电子MIT可以克服固体材料中MIT的基本限制。在此,本研究表明,过冷VO外延薄膜中的等价Ti掺杂剂会导致具有最小滞后的MIT,而不会改变晶胞体积和晶体对称性。VO晶格中的Ti掺杂剂局部改变了V-V对的构型,其中V-V对中的长程有序被破坏,形成了V-V二聚体的纳米域。引人注目的是,这些局部V-V二聚体甚至在高于电子转变温度(T)时仍持续存在,促进了具有纳米级结构异质性的零应变电子MIT。绝缘相和金属相之间几何兼容的界面极大地提高了电驱动和光驱动零应变MIT期间的开关速度和耐久性。这一发现为从科学角度理解MIT以及通过解耦电子和结构转变提高器件速度和可靠性方面的功能提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验