Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
Commun Biol. 2024 Nov 27;7(1):1582. doi: 10.1038/s42003-024-07216-z.
The emergence of drug-resistant Staphylococcus aureus (S. aureus) has resulted in infections in humans and animals that may lead to a crisis in the absence of highly effective drugs. Consequently, the development of alternative or complementary antimicrobial agents is urgently needed. Here, a series of peptides derived from AP138 were designed with high expression, antimicrobial activity, and antibiofilm properties via bioinformatics. Among them, the best derived peptide, A24 (S9A), demonstrated the greatest stability and bactericidal efficiency against multidrug-resistant S. aureus in a physiological environment, with a high hydrophobicity of 35%. This peptide exhibited superior performance compared to the preclinical or clinical antimicrobial peptides (AMPs). A24 displayed increased biocompatibility in vitro and in vivo, exhibiting a low hemolysis rate (less than 3%), minimal cytotoxicity (survival rate exceeding 85%), and no histotoxicity. A24 had the capacity to destroy cell walls, increase cell membrane permeability, and induce increases in intracellular ATP and ROS levels, which resulted in the rapid death of S. aureus. A24 inhibited the formation of early biofilms and eliminated both mature biofilms (40-50%) and persisters (99.9%). Therapeutic doses of A24 were shown to exhibit favorable safety profiles and bactericidal efficacy in vivo and could reduce bacterial loads of multidrug-resistant S. aureus by 4-5 log CFU/0.1g levels in mouse peritonitis and endometritis models. Furthermore, A24 increased the survival rate to 100% and exhibited anti-inflammatory properties in a mouse model. The aforementioned data illustrate the potential of A24 as a pharmaceutical agent for the treatment of bacterial infections, including peritonitis and endometritis, in animal husbandry with multidrug-resistant S. aureus infections.
耐甲氧西林金黄色葡萄球菌(S. aureus)的出现导致了人类和动物的感染,如果没有高效的药物,可能会引发危机。因此,迫切需要开发替代或补充的抗菌药物。在这里,通过生物信息学设计了一系列源自 AP138 的肽,这些肽具有高表达、抗菌活性和抗生物膜特性。其中,衍生肽 A24(S9A)表现出最佳的稳定性和杀菌效率,对生理环境中的多药耐药性 S. aureus 具有高疏水性(35%)。与临床前或临床抗菌肽(AMPs)相比,该肽表现出卓越的性能。A24 在体外和体内显示出更高的生物相容性,其溶血率低于 3%,细胞毒性最小(存活率超过 85%),无组织毒性。A24 能够破坏细胞壁,增加细胞膜通透性,并诱导细胞内 ATP 和 ROS 水平升高,导致 S. aureus 迅速死亡。A24 抑制早期生物膜的形成,并消除成熟生物膜(40-50%)和持久性生物膜(99.9%)。治疗剂量的 A24 在体内表现出良好的安全性和杀菌效果,并可降低腹膜炎和子宫内膜炎模型中多药耐药性 S. aureus 的细菌负荷 4-5 个对数 CFU/0.1g 水平。此外,A24 使腹膜炎和子宫内膜炎动物模型的存活率提高到 100%,并具有抗炎特性。上述数据表明,A24 有潜力成为治疗多药耐药性 S. aureus 感染动物养殖业中腹膜炎和子宫内膜炎等细菌感染的药物。