Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan.
Data Science Program, King Abdullah International Medical Research Centre, Riyadh, 11481, Saudi Arabia.
BMC Genomics. 2024 Nov 27;25(1):1143. doi: 10.1186/s12864-024-11014-6.
Solanum lycopersicum (family: Solanaceae) is a crucial crop and model organism for many phenotypic traits, and its sequenced genome provides valuable insights into plant biology and crop improvement. This study investigated lectin receptor-like kinases (LecRLKs) in tomato, focusing on L-type and G-type families. Mining the tomato genome (ITAG2.4) revealed 161 putative lectin genes across seven families, with GNA-related genes being the most abundant. Gene duplication analysis indicated that tandem and segmental duplications were the primary mechanisms driving LecRLK gene family expansion, particularly for G-type LecRLKs. These duplicated genes showed evidence of both purifying and negative selection, suggesting functional conservation and sub-functionalization. L-type and G-type LecRLKs exhibited diverse domain rearrangement architectures and subcellular localizations, with G-type LecRLKs showing greater expansion and architectural diversity. Differential expression analysis during abiotic stress (drought, heat, and cold stress) revealed key responsive genes. During drought stress, 63.2% of L-type and 18.5% of G-type LecRLK genes were expressed, with L-type Solyc09g005000.1 and G-type Solyc03g078360.1 genes showing significant 2-fold upregulation. Heat stress (42 °C) induced the upregulation of L-type Solyc04g071000.1 and G-type Solyc03g078360.1 and Solyc04g008400.1, particularly after 12-24 h of exposure. Promoter analysis revealed numerous stress-related cis-elements. Transcription factor predictions and miRNA targeting sites suggest complex regulatory mechanisms. This comprehensive in silico characterization of tomato LecRLKs, including their expansion patterns and evolutionary pressures, provides insights into their potential roles in abiotic stress responses and lays the groundwork for enhancing crop resilience through targeted breeding or genetic engineering approaches.
茄属植物(茄科)是许多表型特征的重要作物和模式生物,其测序基因组为植物生物学和作物改良提供了有价值的见解。本研究调查了番茄中的凝集素受体样激酶(LecRLKs),重点关注 L 型和 G 型家族。挖掘番茄基因组(ITAG2.4)揭示了跨越七个家族的 161 个假定的凝集素基因,其中 GNA 相关基因最为丰富。基因复制分析表明,串联和片段复制是驱动 LecRLK 基因家族扩张的主要机制,特别是对于 G 型 LecRLKs。这些复制基因既有纯化选择又有负选择的证据,表明功能保守和亚功能化。L 型和 G 型 LecRLKs 表现出不同的结构域重排结构和亚细胞定位,G 型 LecRLKs 表现出更大的扩张和结构多样性。非生物胁迫(干旱、热和冷胁迫)期间的差异表达分析揭示了关键的响应基因。在干旱胁迫下,63.2%的 L 型和 18.5%的 G 型 LecRLK 基因表达,其中 L 型 Solyc09g005000.1 和 G 型 Solyc03g078360.1 基因显著上调 2 倍。热胁迫(42°C)诱导 L 型 Solyc04g071000.1 和 G 型 Solyc03g078360.1 和 Solyc04g008400.1 的上调,特别是在暴露 12-24 小时后。启动子分析揭示了许多与胁迫相关的顺式元件。转录因子预测和 miRNA 靶标表明存在复杂的调控机制。番茄 LecRLKs 的这种全面的计算机模拟特征,包括它们的扩展模式和进化压力,为它们在非生物胁迫响应中的潜在作用提供了深入了解,并为通过靶向育种或遗传工程方法提高作物的抗逆性奠定了基础。