Saberigarakani Alireza, Patel Riya P, Almasian Milad, Zhang Xinyuan, Brewer Jonathan, Hassan Sohail S, Chai Jichen, Lee Juhyun, Fei Baowei, Yuan Jie, Carroll Kelli, Ding Yichen
bioRxiv. 2024 Nov 15:2024.11.14.623621. doi: 10.1101/2024.11.14.623621.
Despite advancements in cardiovascular engineering, heart diseases remain a leading cause of mortality. The limited understanding of the underlying mechanisms of cardiac dysfunction at the cellular level restricts the development of effective screening and therapeutic methods. To address this, we have developed a framework that incorporates light field detection and individual cell tracking to capture real-time volumetric data in zebrafish hearts, which share structural and electrical similarities with the human heart and generate 120 to 180 beats per minute. Our results indicate that the in-house system achieves an acquisition speed of 200 volumes per second, with resolutions of up to 5.02 ± 0.54 µm laterally and 9.02 ± 1.11 µm axially across the entire depth, using the estimated-maximized-smoothed deconvolution method. The subsequent deep learning-based cell trackers enable further investigation of contractile dynamics, including cellular displacement and velocity, followed by volumetric tracking of specific cells of interest from end-systole to end-diastole in an interactive environment. Collectively, our strategy facilitates real-time volumetric imaging and assessment of contractile dynamics across the entire ventricle at the cellular resolution over multiple cycles, providing significant potential for exploring intercellular interactions in both health and disease.
尽管心血管工程取得了进展,但心脏病仍然是主要的死亡原因。在细胞水平上对心脏功能障碍潜在机制的了解有限,限制了有效筛查和治疗方法的发展。为了解决这个问题,我们开发了一个框架,该框架结合了光场检测和单个细胞跟踪,以捕获斑马鱼心脏的实时体积数据,斑马鱼心脏在结构和电方面与人类心脏相似,每分钟跳动120至180次。我们的结果表明,使用估计最大化平滑反卷积方法,该内部系统实现了每秒200个体积的采集速度,横向分辨率高达5.02±0.54µm,在整个深度上轴向分辨率为9.02±1.11µm。随后基于深度学习的细胞跟踪器能够进一步研究收缩动力学,包括细胞位移和速度,然后在交互式环境中对从收缩末期到舒张末期的特定感兴趣细胞进行体积跟踪。总体而言,我们的策略有助于在多个周期内以细胞分辨率对整个心室进行实时体积成像和收缩动力学评估,为探索健康和疾病状态下的细胞间相互作用提供了巨大潜力。