Suppr超能文献

在单一半高通量试验中测定青蒿素治疗恶性疟原虫后的生长、抗性及恢复情况。

Measuring Growth, Resistance, and Recovery after Artemisinin Treatment of Plasmodium falciparum in a single semi-high-throughput Assay.

作者信息

Sievert Mackenzie A C, Singh Puspendra P, Shoue Douglas A, Checkley Lisa A, Brenneman Katelyn M, Qahash Tarrick, Cassady Zione, Kumar Sudhir, Li Xue, Nosten François H, Anderson Timothy J C, Vaughan Ashley M, Romero-Severson Jeanne, Ferdig Michael T

机构信息

Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Nov 11:2024.11.11.623064. doi: 10.1101/2024.11.11.623064.

Abstract

BACKGROUND

Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in , the molecular marker of resistance, are widely reported in East Africa. Effective assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R. Here, we extend and refine this assay to include measurements of parasite growth and recovery after drug exposure. Clinical isolates and progeny from two genetic crosses were used to optimize and validate the reliability of a straight-from-blood, SYBR Green-based qPCR protocol in a 96-well plate format to accurately measure phenotypes for Growth, Resistance, and Recovery.

RESULTS

The assay determined growth between 6 h and 96 h, resistance at 120 h, and recovery from 120 h and 192 h. Growth can be accurately captured by qPCR and is shown by reproduction of previous growth phenotypes from HB3 × Dd2. Resistance measured at 120 h continually shows the most consistent phenotype for ring stage susceptibility. Recovery identifies an additional response to drug than parasites that are determined sensitive by Fold Change at 120 h. Comparison of progeny phenotypes for Growth vs Resistance showed a minor but significant correlation, whereas Growth vs Recovery and Resistance vs Recovery showed no significant correlation. Additionally, dried blood spot (DBS) samples matched Fold Change measured from liquid samples demonstrating Resistance can be easily quantified using either storage method.

CONCLUSIONS

The qPCR-based methodology provides the throughput needed to quickly measure large numbers of parasites for multiple relevant phenotypes. Growth can reveal fitness defects and illuminate relationships between proliferation rates and drug response. Recovery serves as a complementary phenotype to resistance that quantifies the ability of sensitive parasites to tolerate drug exposure. All three phenotypes offer a comprehensive assessment of parasite-drug interaction each with independent genetic determinants of main effect and overlapping secondary effects that should be further. By adapting our method to include DBS, readouts can be easily extended to surveillance applications.

摘要

背景

青蒿素部分抗性(ART-R)已在东南亚蔓延,并且在东非广泛报道了抗性分子标记 中的突变。有效的检测方法和可靠的表型对于监测抗性的出现和传播的群体至关重要。最近开发的扩展恢复环状阶段存活检测使用基于qPCR的读数来降低ART-R表型分析的劳动强度,并改善与ART-R临床表型的相关性。在这里,我们扩展并完善了该检测方法,以包括药物暴露后寄生虫生长和恢复的测量。使用来自两个遗传杂交的临床分离株和子代来优化和验证基于SYBR Green的直接从血液中提取的qPCR方案在96孔板形式下的可靠性,以准确测量生长、抗性和恢复的表型。

结果

该检测方法确定了6小时至96小时的生长情况、120小时的抗性以及120小时至192小时的恢复情况。生长情况可以通过qPCR准确捕获,并且通过HB3×Dd2先前的生长表型得以重现。在120小时测量的抗性持续显示出环状阶段敏感性最一致的表型。恢复情况识别出一种与在120小时通过变化倍数确定为敏感的寄生虫相比对药物的额外反应。生长与抗性的子代表型比较显示出轻微但显著的相关性,而生长与恢复以及抗性与恢复之间没有显著相关性。此外,干血斑(DBS)样本与从液体样本测量的变化倍数相匹配,表明使用任何一种储存方法都可以轻松量化抗性。

结论

基于qPCR的方法提供了快速测量大量寄生虫多种相关表型所需的通量。生长可以揭示适应性缺陷,并阐明增殖率与药物反应之间的关系。恢复作为抗性的补充表型,量化敏感寄生虫耐受药物暴露的能力。所有这三种表型都提供了对寄生虫-药物相互作用的全面评估,每种表型都有主要效应的独立遗传决定因素和重叠的次要效应,应进一步研究。通过使我们的方法适用于包括DBS,读数可以轻松扩展到监测应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a75/11601240/681b03249312/nihpp-2024.11.11.623064v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验