Suppr超能文献

模拟具有不同共性的两个输入的短期记忆的神经网络。

Neural networks simulating short-term memory of two inputs with varying commonality.

作者信息

Raman Eric, Shupe Larry, Eaton Ryan, Fetz Eberhard

机构信息

Department of Medicine, University of Washington Medical School, Seattle, WA 98195.

Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195.

出版信息

bioRxiv. 2024 Nov 21:2024.11.20.624539. doi: 10.1101/2024.11.20.624539.

Abstract

The activity and connectivity of neurons in the primate brain underlying behavior cannot yet be completely specified, but neural networks provide complete models of the connectivity and activity that performs specific tasks and provide insight into the neural computations performed by the primate brain (Fetz and Shupe 2003). Studies of neurons in the monkey cortex have shown that short-term memory of sensory events may be mediated by sustained neural activity. Short-term memory tasks have been modeled with dynamic neural networks using a single continuous variable and a gate input to create a sample-and-hold (SAH) function (Zipser 1991; Maier 2003). Networks trained to perform these short-term memory tasks develop hidden unit activity which resembles that of cortical neurons in monkeys performing memory tasks. We here extend the investigation of single-input SAH networks to networks computing SAH for two continuous-variable inputs that have varying degrees of common mode signal. Results provide insights into computational mechanisms of associative short-term memory of sensory signals with common mode components, such as visual inputs to the two eyes, auditory inputs to the ears and proprioceptive input from multiple muscle spindle afferents. We also examined the attractor states that these SAH networks eventually reach after sufficiently long delay periods and found that these were determined by the shapes of the input-output functions of the hidden units rather than network architecture.

摘要

灵长类动物大脑中与行为相关的神经元活动和连接性尚未完全明确,但神经网络提供了执行特定任务的连接性和活动的完整模型,并有助于深入了解灵长类动物大脑所执行的神经计算(费茨和舒普,2003年)。对猴子皮层神经元的研究表明,感觉事件的短期记忆可能由持续的神经活动介导。短期记忆任务已通过动态神经网络进行建模,使用单个连续变量和门控输入来创建采样保持(SAH)功能(齐普泽,1991年;迈尔,2003年)。经过训练执行这些短期记忆任务的网络会产生隐藏单元活动,类似于执行记忆任务的猴子的皮层神经元活动。我们在此将单输入SAH网络的研究扩展到为具有不同程度共模信号的两个连续变量输入计算SAH的网络。研究结果为具有共模成分的感觉信号(如双眼的视觉输入、双耳的听觉输入以及来自多个肌梭传入纤维的本体感觉输入)的关联短期记忆的计算机制提供了见解。我们还研究了这些SAH网络在足够长的延迟期后最终达到的吸引子状态,发现这些状态由隐藏单元的输入输出函数形状而非网络架构决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d18/11601579/a8c989e0bf1e/nihpp-2024.11.20.624539v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验