Suppr超能文献

循环神经网络揭示的工作记忆准确性的神经机制

Neural Mechanisms of Working Memory Accuracy Revealed by Recurrent Neural Networks.

作者信息

Xie Yuanqi, Liu Yichen Henry, Constantinidis Christos, Zhou Xin

机构信息

Department of Computer Science, Vanderbilt University, Nashville, TN, United States.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.

出版信息

Front Syst Neurosci. 2022 Feb 14;16:760864. doi: 10.3389/fnsys.2022.760864. eCollection 2022.

Abstract

Understanding the neural mechanisms of working memory has been a long-standing Neuroscience goal. Bump attractor models have been used to simulate persistent activity generated in the prefrontal cortex during working memory tasks and to study the relationship between activity and behavior. How realistic the assumptions of these models are has been a matter of debate. Here, we relied on an alternative strategy to gain insights into the computational principles behind the generation of persistent activity and on whether current models capture some universal computational principles. We trained Recurrent Neural Networks (RNNs) to perform spatial working memory tasks and examined what aspects of RNN activity accounted for working memory performance. Furthermore, we compared activity in fully trained networks and immature networks, achieving only imperfect performance. We thus examined the relationship between the trial-to-trial variability of responses simulated by the network and different aspects of unit activity as a way of identifying the critical parameters of memory maintenance. Properties that spontaneously emerged in the artificial network strongly resembled persistent activity of prefrontal neurons. Most importantly, these included drift of network activity during the course of a trial that was causal to the behavior of the network. As a consequence, delay period firing rate and behavior were positively correlated, in strong analogy to experimental results from the prefrontal cortex. These findings reveal that delay period activity is computationally efficient in maintaining working memory, as evidenced by unbiased optimization of parameters in artificial neural networks, oblivious to the properties of prefrontal neurons.

摘要

理解工作记忆的神经机制一直是神经科学的长期目标。凸起吸引子模型已被用于模拟工作记忆任务期间前额叶皮层中产生的持续活动,并研究活动与行为之间的关系。这些模型的假设在多大程度上符合现实一直是一个有争议的问题。在这里,我们依靠一种替代策略来深入了解持续活动产生背后的计算原理,以及当前模型是否捕捉到一些通用的计算原理。我们训练循环神经网络(RNN)来执行空间工作记忆任务,并研究RNN活动的哪些方面决定了工作记忆性能。此外,我们比较了完全训练的网络和性能仅不完善的未成熟网络中的活动。因此,我们研究了网络模拟反应的逐次试验变异性与单元活动的不同方面之间的关系,以此来确定记忆维持的关键参数。人工网络中自发出现的特性与前额叶神经元的持续活动非常相似。最重要的是,这些特性包括试验过程中网络活动的漂移,这对网络行为具有因果关系。因此,延迟期放电率与行为呈正相关这一点与前额叶皮层的实验结果非常相似。这些发现表明,延迟期活动在维持工作记忆方面具有计算效率,这在人工神经网络参数的无偏优化中得到了证明,而这与前额叶神经元的特性无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c8/8883483/4dbaf4423a33/fnsys-16-760864-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验