Suppr超能文献

用于双光子亚细胞钙成像的预处理工具箱。

A preprocessing toolbox for 2-photon subcellular calcium imaging.

作者信息

Jiang Anqi, Zhao Chong, Sheffield Mark

机构信息

Department of Neurobiology, Neuroscience Institute, University of Chicago.

Department of Psychology, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

bioRxiv. 2024 Nov 21:2024.10.04.616737. doi: 10.1101/2024.10.04.616737.

Abstract

Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient pre-processing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying Fast Fourier Transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply band-pass filtering methods (e.g. 0.05 to 0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from z-plane movement, we apply Principal Component Analysis on all calcium traces and use a Bottom-Up Segmentation change-point detection model on the first principal component. After removing movement artifacts, we further identify calcium transients from noise by analyzing their prominence and duration. Finally, ROIs with high activity correlation are grouped using hierarchical or k-means clustering. Using axon ROIs in the CA1 region, we confirm that both clustering methods effectively determine the optimal number of clusters in pairwise correlation matrices, yielding similar groupings to "ground truth" data. Our approach provides a guideline for standardizing the extraction of physiological signals from subcellular compartments during behavior with 2-photon calcium imaging.

摘要

在行为过程中,使用双光子钙成像记录轴突和树突等神经元亚细胞区室的尖峰活动越来越普遍,但由于信噪比低、感兴趣区域(ROI)识别不准确、运动伪影以及难以将来自同一神经元的ROI分组,这仍然具有挑战性。为了解决这些问题,我们提出了一种计算效率高的预处理流程,用于亚细胞信号检测、运动伪影识别和ROI分组。对于亚细胞信号检测,我们通过对从轴突ROI收集的平滑时间序列钙迹线应用快速傅里叶变换(FFT)来捕获钙瞬态动力学的频率分布。然后,我们应用带通滤波方法(例如0.05至0.12Hz)来选择包含与瞬态功率带匹配频率的ROI。为了去除z平面运动中的运动伪影,我们对所有钙迹线应用主成分分析,并在第一主成分上使用自下而上分割变化点检测模型。去除运动伪影后,我们通过分析钙瞬态的突出度和持续时间,进一步从噪声中识别钙瞬态。最后,使用层次聚类或k均值聚类对具有高活动相关性的ROI进行分组。使用CA1区域中的轴突ROI,我们确认两种聚类方法都能有效地确定成对相关矩阵中的最佳聚类数,产生与“真实”数据相似的分组。我们的方法为在行为过程中使用双光子钙成像从亚细胞区室标准化提取生理信号提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1443/11601315/55c374e809b9/nihpp-2024.10.04.616737v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验