Fakharian Mohammad Amin, Shoup Alden M, Hage Paul, Elseweifi Hisham Y, Shadmehr Reza
Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
bioRxiv. 2025 Feb 11:2024.11.14.623565. doi: 10.1101/2024.11.14.623565.
Null space theory predicts that a neuron will often generate spikes not to produce behavior, but to prevent another neuron's impact on behavior. Here, we present a direct test of this theory in the brain. In the marmoset cerebellum, spike-triggered averaging identified a vector for each Purkinje cell (P-cell) along which its spikes displaced the eyes. Two spikes in two different P-cells produced superposition of their vectors. In the resulting population activity, the spikes were canceled if their contributions were perpendicular to the intended movement. Mossy fibers provided a copy of the motor commands and the sensory goal of the movement. Molecular layer interneurons transformed these inputs so that the P-cell population predicted when the movement had reached the goal and should be stopped.
零空间理论预测,神经元产生尖峰信号通常并非为了引发行为,而是为了阻止另一个神经元对行为产生影响。在此,我们在大脑中对这一理论进行了直接验证。在狨猴小脑,通过触发尖峰平均法确定了每个浦肯野细胞(P细胞)的一个向量,其尖峰信号会沿着该向量移动眼睛。两个不同P细胞中的尖峰信号会使其向量叠加。在由此产生的群体活动中,如果尖峰信号的贡献与预期运动方向垂直,它们就会相互抵消。苔藓纤维提供了运动指令和运动的感觉目标的副本。分子层中间神经元对这些输入进行转换,以使P细胞群体能够预测运动何时达到目标并应停止。