Battini Leandro, Thannickal Sara A, Cibello Malena Tejerina, Bollini Mariela, Stapleford Kenneth A, Álvarez Diego E
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina.
Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBON), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina.
bioRxiv. 2024 Nov 11:2024.11.11.623010. doi: 10.1101/2024.11.11.623010.
Envelope proteins drive virus and host-cell membrane fusion to achieve virus entry. Fusogenic proteins are classified into structural classes that function with remarkable mechanistic similarities. Fusion proceeds through coordinated movements of protein domains in a sequence of orchestrated steps. Structures for the initial and final conformations are available for several fusogens, but folding intermediates have largely remained unresolved and interdependency between regions that drive conformational rearrangements is not well understood. Chikungunya virus (CHIKV) particles display heterodimers of envelope proteins E1 and E2 associated as trimeric spikes that respond to acidic pH to trigger fusion. We have followed experimental evolution of CHIKV under the selective pressure of a novel small-molecule entry inhibitor. Mutations arising from selection mapped to two residues located in distal domains of E2 and E1 heterodimer and spikes. Here, we pinpointed the antiviral mode of action to inhibition of fusion. Phenotypic characterization of recombinant viruses indicated that the selected mutations confer a fitness advantage under antiviral pressure, and that the double-mutant virus overcame antiviral inhibition of fusion while single-mutants were sensitive. Further supporting a functional connection between residues, the double-mutant virus displayed a higher pH-threshold for fusion than single-mutant viruses. Finally, mutations implied distinct outcomes of replication and spreading in mice, and infection rates in mosquitoes underscoring the fine-tuning of envelope protein function as a determinant for establishment of infection. Together with molecular dynamics simulations that indicate a link between these two residues in the modulation of the heterodimer conformational rearrangement, our approach captured an otherwise unresolved interaction.
包膜蛋白驱动病毒与宿主细胞膜融合以实现病毒进入。融合蛋白可分为具有显著相似机制功能的结构类别。融合过程通过蛋白质结构域在一系列精心编排步骤中的协同运动进行。几种融合蛋白的初始和最终构象结构已为人所知,但折叠中间体在很大程度上仍未得到解析,驱动构象重排的区域之间的相互依赖性也尚未得到很好的理解。基孔肯雅病毒(CHIKV)颗粒展示出包膜蛋白E1和E2的异二聚体,它们作为三聚体刺突相互关联,对酸性pH作出反应以触发融合。我们追踪了在一种新型小分子进入抑制剂的选择压力下CHIKV的实验进化过程。选择产生的突变定位到E2和E1异二聚体及刺突远端结构域中的两个残基。在此,我们确定了抗病毒作用模式为抑制融合。重组病毒的表型特征表明,所选突变在抗病毒压力下赋予了适应性优势,双突变病毒克服了抗病毒对融合的抑制,而单突变病毒则敏感。进一步支持残基之间的功能联系的是,双突变病毒比单突变病毒表现出更高的融合pH阈值。最后,突变暗示了在小鼠体内复制和传播以及在蚊子体内感染率的不同结果,强调了包膜蛋白功能的微调作为感染建立的决定因素。结合分子动力学模拟表明这两个残基在异二聚体构象重排调节中的联系,我们的方法捕捉到了一种原本未解析的相互作用。