Suppr超能文献

情景分析而非短缺预测,才是制定更优劳动力政策的关键。

Scenarios, not shortage forecasts, are key to better workforce policy.

作者信息

Buntin Melinda J B, Chen Mingxin, Auerbach David I

机构信息

Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States.

Carey Business School, Johns Hopkins University, Baltimore, MD 21202, United States.

出版信息

Health Aff Sch. 2024 Nov 13;2(11):qxae149. doi: 10.1093/haschl/qxae149. eCollection 2024 Nov.

Abstract

Current and projected shortages in the US health workforce have prompted policymakers to propose reforms to Medicare Graduate Medical Education (GME) and nursing programs. However, researchers have historically faced challenges in accurately predicting workforce trends; physician and nurse supply and demand all grew faster than expected over the past 2 decades. These discrepancies highlight the need for scenario-based workforce planning and projection models that estimate how a policy intervention would affect the workforce outcome of interest. In addition, policy options modeled should address not only increasing provider-to-population ratios but also improving health outcomes through innovative payment and care models.

摘要

美国医疗劳动力当前和预计的短缺促使政策制定者提议对医疗保险研究生医学教育(GME)和护理项目进行改革。然而,历史上研究人员在准确预测劳动力趋势方面一直面临挑战;在过去20年里,医生和护士的供需增长均超过预期。这些差异凸显了基于情景的劳动力规划和预测模型的必要性,这些模型可估计政策干预将如何影响感兴趣的劳动力结果。此外,所模拟的政策选项不仅应解决提高医疗服务提供者与人口比例的问题,还应通过创新的支付和护理模式改善健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/11599709/55675df12b7b/qxae149f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验