Suppr超能文献

成像质谱中无标记组织的虚拟染色

Virtual Staining of Label-Free Tissue in Imaging Mass Spectrometry.

作者信息

Zhang Yijie, Huang Luzhe, Pillar Nir, Li Yuzhu, Migas Lukasz G, de Plas Raf Van, Spraggins Jeffrey M, Ozcan Aydogan

出版信息

ArXiv. 2024 Nov 20:arXiv:2411.13120v1.

Abstract

Imaging mass spectrometry (IMS) is a powerful tool for untargeted, highly multiplexed molecular mapping of tissue in biomedical research. IMS offers a means of mapping the spatial distributions of molecular species in biological tissue with unparalleled chemical specificity and sensitivity. However, most IMS platforms are not able to achieve microscopy-level spatial resolution and lack cellular morphological contrast, necessitating subsequent histochemical staining, microscopic imaging and advanced image registration steps to enable molecular distributions to be linked to specific tissue features and cell types. Here, we present a virtual histological staining approach that enhances spatial resolution and digitally introduces cellular morphological contrast into mass spectrometry images of label-free human tissue using a diffusion model. Blind testing on human kidney tissue demonstrated that the virtually stained images of label-free samples closely match their histochemically stained counterparts (with Periodic Acid-Schiff staining), showing high concordance in identifying key renal pathology structures despite utilizing IMS data with 10-fold larger pixel size. Additionally, our approach employs an optimized noise sampling technique during the diffusion model's inference process to reduce variance in the generated images, yielding reliable and repeatable virtual staining. We believe this virtual staining method will significantly expand the applicability of IMS in life sciences and open new avenues for mass spectrometry-based biomedical research.

摘要

成像质谱(IMS)是生物医学研究中用于对组织进行非靶向、高度多重分子图谱分析的强大工具。IMS提供了一种以无与伦比的化学特异性和灵敏度绘制生物组织中分子种类空间分布的方法。然而,大多数IMS平台无法实现显微镜级别的空间分辨率,且缺乏细胞形态对比度,因此需要后续的组织化学染色、显微成像和先进的图像配准步骤,以便将分子分布与特定的组织特征和细胞类型联系起来。在此,我们提出一种虚拟组织学染色方法,该方法利用扩散模型提高空间分辨率,并在无标记人体组织的质谱图像中数字引入细胞形态对比度。对人体肾脏组织的盲测表明,无标记样本的虚拟染色图像与组织化学染色(过碘酸-希夫染色)的对应图像非常匹配,尽管使用的IMS数据像素尺寸大10倍,但在识别关键肾脏病理结构方面显示出高度一致性。此外,我们的方法在扩散模型的推理过程中采用了优化的噪声采样技术,以减少生成图像中的方差,产生可靠且可重复的虚拟染色。我们相信这种虚拟染色方法将显著扩展IMS在生命科学中的适用性,并为基于质谱的生物医学研究开辟新途径。

相似文献

2
Virtual staining of label-free tissue in imaging mass spectrometry.成像质谱中无标记组织的虚拟染色
Sci Adv. 2025 Aug;11(31):eadv0741. doi: 10.1126/sciadv.adv0741. Epub 2025 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验