文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脯氨酸取代/掺入对自组装形成β-折叠肽纳米结构的影响。

Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide.

作者信息

Wychowaniec Jacek K, Šrejber Martin, Zeng Niting, Smith Andrew M, Miller Aline F, Otyepka Michal, Saiani Alberto

机构信息

Department of Materials, Manchester Institute of Biotechnology, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester UK.

AO Research Institute Davos Clavadelerstrasse 8 Davos 7270 Switzerland

出版信息

RSC Adv. 2024 Nov 27;14(50):37419-37430. doi: 10.1039/d4ra07065h. eCollection 2024 Nov 19.


DOI:10.1039/d4ra07065h
PMID:39606779
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11601148/
Abstract

Self-assembling peptides remain persistently interesting objects for building nanostructures and further assemble into macroscopic structures, hydrogels, at sufficiently high concentrations. The modulation of self-assembling β-sheet-forming peptide sequences, with a selection from the full library of amino acids, offers unique possibility for rational tuning of the resulting nanostructured morphology and topology of the formed hydrogel networks. In the present work, we explored how a known β-sheet-disassembling amino acid, proline (P), affects the self-assembly and gelation properties of amphipathic peptides. For this purpose, we modified the backbone of a known β-sheet-forming peptide, FEFKFEFK (F8, F = phenylalanine, E = glutamic acid, and K = lysine), with P to form three sequences: FEFKPEFK (FP), FEFKPEFKF (KPE) and FEFEPKFKF (EPK). The replacement of F by P in the hydrophobic face resulted in the loss of the extended β-sheet conformation of the FP peptide and no gelation at concentration as high as 100 mg mL, compared to typical 5 mg mL concentration corresponding to F8. However, by retaining four hydrophobic phenylalanine amino acids in the sequences, hydrogels containing a partial β-sheet structure were still formed at 30 mg mL for KPE (pH 4-10) and EPK (pH 2-5). TEM, AFM, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) revealed that KPE and EPK peptides self-assemble into nanoribbons and twisted nanofibers, respectively. Molecular dynamics confirmed that the single amino acid replacement of F by P prevented the assembly of the FP peptide with respect to the stable β-sheet-forming F8 variant. Moreover, additional prolongation by F in the KPE variant and shuffling of the polar amino acid sequence in the EPK peptide supported aggregation capabilities of both variants in forming distinct shapes of individual aggregates. Although the overall number of amino acids is the same in both KPE and EPK, their shifted charge density (, the chemical environment in which ionic groups reside) drives self-assembly into distinct nanostructures. The investigated structural changes can contribute to new material designs for biomedical applications and provide better understanding in the area of protein folding.

摘要

自组装肽一直是构建纳米结构并在足够高浓度下进一步组装成宏观结构(即水凝胶)的有趣研究对象。通过从完整的氨基酸文库中进行选择来调节形成β-折叠的自组装肽序列,为合理调控所得纳米结构的形态以及所形成水凝胶网络的拓扑结构提供了独特的可能性。在本工作中,我们探究了一种已知的能拆解β-折叠的氨基酸——脯氨酸(P),是如何影响两亲性肽的自组装和凝胶化性质的。为此,我们用P修饰了一种已知的形成β-折叠的肽FEFKFEFK(F8,F = 苯丙氨酸,E = 谷氨酸,K = 赖氨酸)的主链,形成了三个序列:FEFKPEFK(FP)、FEFKPEFKF(KPE)和FEFEPKFKF(EPK)。在疏水面上用P取代F导致FP肽失去了延伸的β-折叠构象,并且在高达100 mg/mL的浓度下都没有凝胶化,而F8对应的典型凝胶化浓度为5 mg/mL。然而,通过在序列中保留四个疏水的苯丙氨酸氨基酸,对于KPE(pH 4 - 10)和EPK(pH 2 - 5),在30 mg/mL时仍形成了含有部分β-折叠结构的水凝胶。透射电子显微镜(TEM)、原子力显微镜(AFM)、小角X射线散射(SAXS)和广角X射线散射(WAXS)表明,KPE和EPK肽分别自组装成纳米带和扭曲的纳米纤维。分子动力学证实,相对于稳定的形成β-折叠的F8变体,用P单氨基酸取代F阻止了FP肽的组装。此外,KPE变体中F的额外延长以及EPK肽中极性氨基酸序列的重排支持了这两种变体形成不同形状的单个聚集体的聚集能力。虽然KPE和EPK中的氨基酸总数相同,但它们电荷密度的变化(即离子基团所处的化学环境)驱动它们自组装成不同的纳米结构。所研究的结构变化有助于生物医学应用的新材料设计,并为蛋白质折叠领域提供更好的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/8ec2ef5ef40c/d4ra07065h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/da976d18bed4/d4ra07065h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/1d3dc37653ab/d4ra07065h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/4efd6801fc05/d4ra07065h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/87c034ec7e50/d4ra07065h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/aef0fc4daa45/d4ra07065h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/8ec2ef5ef40c/d4ra07065h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/da976d18bed4/d4ra07065h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/1d3dc37653ab/d4ra07065h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/4efd6801fc05/d4ra07065h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/87c034ec7e50/d4ra07065h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/aef0fc4daa45/d4ra07065h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e2/11601148/8ec2ef5ef40c/d4ra07065h-f6.jpg

相似文献

[1]
Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide.

RSC Adv. 2024-11-27

[2]
Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels.

Biomacromolecules. 2020-6-8

[3]
Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.

Biomacromolecules. 2011-5-24

[4]
Capacity for increased surface area in the hydrophobic core of β-sheet peptide bilayer nanoribbons.

J Pept Sci. 2021-9

[5]
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation.

Langmuir. 2016-5-3

[6]
Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.

Langmuir. 2012-11-8

[7]
Aromatic Stacking Facilitated Self-Assembly of Ultrashort Ionic Complementary Peptide Sequence: β-Sheet Nanofibers with Remarkable Gelation and Interfacial Properties.

Biomacromolecules. 2020-7-13

[8]
Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.

Acta Biomater. 2017-6

[9]
From fibres to networks using self-assembling peptides.

Faraday Discuss. 2013

[10]
Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins.

Int J Biol Macromol. 2024-2

引用本文的文献

[1]
Application and prospects of genetic engineering in CAR-NK cell therapy.

Front Immunol. 2025-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索