Xie Yin, Xu Chenyu, Liu Yan, Zhang Entao, Chen Ziying, Zhan Xiaopeng, Deng Guangyu, Gao Yuan, Zhang Yanwei
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
Adv Sci (Weinh). 2025 Jan;12(3):e2410201. doi: 10.1002/advs.202410201. Epub 2024 Nov 28.
Employing UV-vis spectrum for hydrogen generation and vis-IR spectrum to elevate reaction temperatures and induce phase transitions effectively enhances yield and purifies water, demonstrating a judicious strategy for solar energy utilization. This study presents an interfacial photothermal water splitting system that utilizes all-inorganic, economical industrial by-products known as fly ash cenospheres (FAC) for solar-driven hydrogen generation. In this system, the yield reaches 254.8 µmol h cm, representing an 89% augmentation compared to that of the three-phase system. In situ experiments, combined with theoretical calculation, reveal the system's robust light absorption capacity, facilitating rapid gas separation, thus improves the solar-to-hydrogen (STH) efficiency. Furthermore, the system demonstrates strong performance in turbid water and scalability for expansive applications, achieving a hydrogen yield exceeding 50 L h m from various water sources. Facilitating large-scale hydrogen production and water purification, it thereby establishing its potential as a viable solution for sustainable energy generation.
利用紫外-可见光谱进行制氢,并利用可见-红外光谱提高反应温度和诱导相变,可有效提高产率并净化水,这展示了一种明智的太阳能利用策略。本研究提出了一种界面光热水解系统,该系统利用被称为粉煤灰空心微珠(FAC)的全无机、经济的工业副产品进行太阳能驱动的制氢。在该系统中,产率达到254.8 μmol h cm,与三相系统相比提高了89%。原位实验与理论计算相结合,揭示了该系统强大的光吸收能力,有利于快速气体分离,从而提高了太阳能制氢(STH)效率。此外,该系统在浑浊水中表现出强大性能且具有可扩展性,适用于广泛应用,从各种水源实现了超过50 L h m的氢气产率。它促进了大规模制氢和水净化,从而确立了其作为可持续能源生产可行解决方案的潜力。