School of Mathematical Sciences, Queen Mary University of London, London, UK.
Department of Statistical Science, University College, London, UK.
Biom J. 2024 Dec;66(8):e70018. doi: 10.1002/bimj.70018.
Gaussian processes and the Kullback-Leibler divergence have been deeply studied in statistics and machine learning. This paper marries these two concepts and introduce the local Kullback-Leibler divergence to learn about intervals where two Gaussian processes differ the most. We address subtleties entailed in the estimation of local divergences and the corresponding interval of local maximum divergence as well. The estimation performance and the numerical efficiency of the proposed method are showcased via a Monte Carlo simulation study. In a medical research context, we assess the potential of the devised tools in the analysis of electrocardiogram signals.
高斯过程和 Kullback-Leibler 散度在统计学和机器学习领域得到了深入研究。本文将这两个概念结合起来,引入局部 Kullback-Leibler 散度来了解两个高斯过程差异最大的区间。我们解决了局部散度估计和相应的局部最大散度区间所涉及的微妙问题。通过蒙特卡罗模拟研究展示了所提出方法的估计性能和数值效率。在医学研究背景下,我们评估了所设计工具在分析心电图信号方面的潜力。