Suppr超能文献

高斯过程数据的域选择:在心电图信号中的应用。

Domain Selection for Gaussian Process Data: An Application to Electrocardiogram Signals.

机构信息

School of Mathematical Sciences, Queen Mary University of London, London, UK.

Department of Statistical Science, University College, London, UK.

出版信息

Biom J. 2024 Dec;66(8):e70018. doi: 10.1002/bimj.70018.

Abstract

Gaussian processes and the Kullback-Leibler divergence have been deeply studied in statistics and machine learning. This paper marries these two concepts and introduce the local Kullback-Leibler divergence to learn about intervals where two Gaussian processes differ the most. We address subtleties entailed in the estimation of local divergences and the corresponding interval of local maximum divergence as well. The estimation performance and the numerical efficiency of the proposed method are showcased via a Monte Carlo simulation study. In a medical research context, we assess the potential of the devised tools in the analysis of electrocardiogram signals.

摘要

高斯过程和 Kullback-Leibler 散度在统计学和机器学习领域得到了深入研究。本文将这两个概念结合起来,引入局部 Kullback-Leibler 散度来了解两个高斯过程差异最大的区间。我们解决了局部散度估计和相应的局部最大散度区间所涉及的微妙问题。通过蒙特卡罗模拟研究展示了所提出方法的估计性能和数值效率。在医学研究背景下,我们评估了所设计工具在分析心电图信号方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a92/11604031/9fff647aeca4/BIMJ-66-e70018-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验