Suppr超能文献

基于深度学习的未知原发癌甲基化数量性状位点分类器

Deep learning-based classifier for carcinoma of unknown primary using methylation quantitative trait loci.

作者信息

Walker Adam, Fang Camila S, Schroff Chanel, Serrano Jonathan, Vasudevaraja Varshini, Yang Yiying, Belakhoua Sarra, Faustin Arline, William Christopher M, Zagzag David, Chiang Sarah, Acosta Andres Martin, Movahed-Ezazi Misha, Park Kyung, Moreira Andre L, Darvishian Farbod, Galbraith Kristyn, Snuderl Matija

机构信息

Department of Pathology, NYU Langone Health and NYU Grossman School of Medicine, New York, NY, United States.

Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States.

出版信息

J Neuropathol Exp Neurol. 2025 Feb 1;84(2):147-154. doi: 10.1093/jnen/nlae123.

Abstract

Cancer of unknown primary (CUP) constitutes between 2% and 5% of human malignancies and is among the most common causes of cancer death in the United States. Brain metastases are often the first clinical presentation of CUP; despite extensive pathological and imaging studies, 20%-45% of CUP are never assigned a primary site. DNA methylation array profiling is a reliable method for tumor classification but tumor-type-specific classifier development requires many reference samples. This is difficult to accomplish for CUP as many cases are never assigned a specific diagnosis. Recent studies identified subsets of methylation quantitative trait loci (mQTLs) unique to specific organs, which could help increase classifier accuracy while requiring fewer samples. We performed a retrospective genome-wide methylation analysis of 759 carcinoma samples from formalin-fixed paraffin-embedded tissue samples using Illumina EPIC array. Utilizing mQTL specific for breast, lung, ovarian/gynecologic, colon, kidney, or testis (BLOCKT) (185k total probes), we developed a deep learning-based methylation classifier that achieved 93.12% average accuracy and 93.04% average F1-score across a 10-fold validation for BLOCKT organs. Our findings indicate that our organ-based DNA methylation classifier can assist pathologists in identifying the site of origin, providing oncologists insight on a diagnosis to administer appropriate therapy, improving patient outcomes.

摘要

原发灶不明的癌症(CUP)占人类恶性肿瘤的2%至5%,是美国癌症死亡的最常见原因之一。脑转移瘤常常是CUP的首个临床表现;尽管进行了广泛的病理和影像学研究,但20%至45%的CUP始终无法确定原发部位。DNA甲基化阵列分析是肿瘤分类的可靠方法,但肿瘤类型特异性分类器的开发需要许多参考样本。对于CUP来说,这很难做到,因为许多病例从未得到明确诊断。最近的研究发现了特定器官特有的甲基化数量性状位点(mQTL)子集,这有助于提高分类器的准确性,同时所需样本更少。我们使用Illumina EPIC阵列对来自福尔马林固定石蜡包埋组织样本的759例癌样本进行了回顾性全基因组甲基化分析。利用针对乳腺、肺、卵巢/妇科、结肠、肾或睾丸的mQTL(BLOCKT)(总共18.5万个探针),我们开发了一种基于深度学习的甲基化分类器,在对BLOCKT器官进行10倍交叉验证时,平均准确率达到93.12%,平均F1分数达到93.04%。我们的研究结果表明,我们基于器官的DNA甲基化分类器可以帮助病理学家确定肿瘤的起源部位,为肿瘤学家提供诊断依据以实施适当的治疗,从而改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f7d/11747144/fda66b11edc4/nlae123f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验