Suppr超能文献

基于物理和数据驱动的血管分叉压力差混合建模

Hybrid physics-based and data-driven modeling of vascular bifurcation pressure differences.

作者信息

Rubio Natalia L, Pegolotti Luca, Pfaller Martin R, Darve Eric F, Marsden Alison L

机构信息

Stanford University, United States of America.

Stanford University, United States of America.

出版信息

Comput Biol Med. 2025 Jan;184:109420. doi: 10.1016/j.compbiomed.2024.109420. Epub 2024 Nov 28.

Abstract

Reduced-order models allow for the simulation of blood flow in patient-specific vasculatures. They offer a significant reduction in computational cost and wait time compared to traditional computational fluid dynamics models. Unfortunately, due to the simplifications made in their formulations, reduced-order models can suffer from significantly reduced accuracy. One common simplifying assumption is that of continuity of static or total pressure over vascular bifurcations. In many cases, this assumption has been shown to introduce significant errors in pressure predictions. We propose a model to account for this pressure difference, with the ultimate goal of increasing the accuracy of cardiovascular reduced-order models. Our model successfully uses a structure common in existing reduced-order models in conjunction with machine-learning techniques to predict the pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types. We find that our model makes significantly more accurate predictions than other models for approximating bifurcation pressure losses commonly used in the reduced-order cardiovascular modeling community. We also compare the efficacy of different machine-learning techniques and observe that a neural network performs most robustly. Additionally, we consider two different model modalities: one in which the model is fit using both steady and transient flows, and one in which it is optimized for performance in transient flows. We discuss the trade-off between the physical interpretability associated with the first option and the improved accuracy in transient flows associated with the latter option. We also demonstrate the model's ability to generalize by testing it on a combined dataset containing two different bifurcation types. This work marks a step towards improving the accuracy of cardiovascular reduced-order models, thereby increasing their utility for cardiovascular flow modeling.

摘要

降阶模型允许对患者特定血管系统中的血流进行模拟。与传统的计算流体动力学模型相比,它们显著降低了计算成本和等待时间。不幸的是,由于其公式中进行了简化,降阶模型的精度可能会大幅降低。一个常见的简化假设是血管分叉处静压或总压的连续性。在许多情况下,已证明该假设会在压力预测中引入显著误差。我们提出了一个模型来考虑这种压力差,最终目标是提高心血管降阶模型的准确性。我们的模型成功地将现有降阶模型中常见的结构与机器学习技术结合起来,以预测血管分叉处的压力差。我们分析了我们的模型在稳态和瞬态流动中的性能,在代表三种不同分叉几何类型的三个分叉队列上对其进行了测试。我们发现,对于降阶心血管建模社区中常用的近似分叉压力损失的其他模型,我们的模型做出的预测要准确得多。我们还比较了不同机器学习技术的功效,并观察到神经网络的表现最为稳健。此外,我们考虑了两种不同的模型形式:一种是使用稳态和瞬态流动来拟合模型,另一种是针对瞬态流动中的性能进行优化。我们讨论了与第一种选择相关的物理可解释性和与后一种选择相关的瞬态流动中提高的准确性之间的权衡。我们还通过在包含两种不同分叉类型的组合数据集上进行测试,展示了该模型的泛化能力。这项工作朝着提高心血管降阶模型的准确性迈出了一步,从而增加了它们在心血管流动建模中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验