Kanaan Belal M, Algohary Ayman M, Alhalafi Zahra H, Rizk Sameh A, Darwish Atef S
Chemistry Department, College of Science Al-zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
Chemistry Department, College of Science Al-zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Egyptian Drug Authority (EDA), P.O. 29, Giza, Egypt.
Int J Biol Macromol. 2025 Jan;284(Pt 1):138127. doi: 10.1016/j.ijbiomac.2024.138127. Epub 2024 Nov 27.
Innovative super-hydrophilic/superoleophobic eco-friendly sponge composite is fabricated by integrating chemically-modified cellulose with lignin derived from bio-waste wheat-straw. Such combination is implemented by modifying cellulose with thiadiazole-amide and integrating it with lignin using microwave/ultrasonic-powered in-liquid plasma. Physicochemical characteristics of sponge-composite (WL-TDAC) are studied using FTIR, N-physisorption, DLS, SEM, chemical-computational analysis, and surface wettability. In-liquid plasma irradiations inspire formation of abundant hydrogen bonds between cellulose and lignin, constructing highly negatively-charged sponge (ζ = -36 eV) of developed surface character and 3D-hierarchical interconnected porous structure with a pore-size of ~2 nm. Sponge-composite displays underwater-oil-contact angles of 124° and 164.8° for n-hexane/water and dichloromethane/water mixtures, respectively, with water-contact-angle near 0°. Superhydrophilic-superoleophobic sponge powerfully separates light-oil/water and heavy-oil/water mixtures yielding water-permeation-fluxes of 8812.5 and 7500 L/m/h, respectively, keeping separation-efficiencies >96 % for ten-cycles. Sponge-composite is a gorgeous disinfectant against hazardous bacteria/fungi. Cellulose-based lignin sponge seeds as promissory futuristic oil-in-water emulsion antimicrobial separator features for cleaning wastewater from oils and noxious microorganisms.
通过将化学改性纤维素与源自生物废弃物麦秸的木质素相结合,制备了创新型超亲水/超疏油环保海绵复合材料。这种结合是通过用噻二唑酰胺对纤维素进行改性,并使用微波/超声驱动的液内等离子体将其与木质素整合来实现的。利用傅里叶变换红外光谱(FTIR)、N 物理吸附、动态光散射(DLS)、扫描电子显微镜(SEM)、化学计算分析和表面润湿性研究了海绵复合材料(WL-TDAC)的物理化学特性。液内等离子体辐照促使纤维素和木质素之间形成大量氢键,构建了具有高负电荷(ζ = -36 eV)的海绵,其具有发达的表面特性和孔径约为 2 nm 的三维分级互连多孔结构。海绵复合材料对于正己烷/水和二氯甲烷/水混合物,水下油接触角分别为 124°和 164.8°,水接触角接近 0°。超亲水-超疏油海绵能够有效分离轻油/水和重油/水混合物,水渗透通量分别为 8812.5 和 7500 L/m/h,在十个循环中分离效率均保持>96%。海绵复合材料是一种高效的有害细菌/真菌消毒剂。基于纤维素的木质素海绵有望成为未来用于水包油乳液抗菌分离的材料,具有从油和有害微生物中净化废水的功能。