Suppr超能文献

用于木质素增值的可生物降解聚乙烯醇基塑料的制备

Fabrication of biodegradable polyvinyl alcohol-based plastics toward technical lignin valorization.

作者信息

Zou Shuang-Lin, Xiao Ling-Ping, Yin Wen-Zheng, Gui Tao, Sun Run-Cang

机构信息

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.

出版信息

Int J Biol Macromol. 2025 Jan;284(Pt 1):138123. doi: 10.1016/j.ijbiomac.2024.138123. Epub 2024 Nov 26.

Abstract

The fabrication of composite materials from lignin has attracted increasing attention to reducing the dependence of petrochemical-based resources on carbon neutrality. However, the low content of lignin in the biocomposites remains a challenge. Herein, industrial lignin is fractionated by an organic solvent to reduce its structural heterogeneity. Subsequently, the fractionated lignin samples are integrated with polyvinyl alcohol (PVA) to fabricate plastics characterized by uniform thickness and smooth surfaces. The resultant composite films exhibit tensile strength and strain up to 75 MPa and 1050%, respectively, which surpass state-of-the-art lignin-based bioplastics. The mechanism investigations reveal that the enhanced mechanical properties are due to the internal non-covalent interactions derived from the hydroxyl groups of lignin and PVA. Notably, the PVA/lignin films are biodegradable after 92 days' burial in soil. This study paves the way for the rational design of lignin-based biodegradable polymers as sustainable alternatives to conventional plastics.

摘要

利用木质素制备复合材料,以减少石化资源对碳中性的依赖,这一做法已引起越来越多的关注。然而,生物复合材料中木质素含量较低仍是一个挑战。在此,通过有机溶剂对工业木质素进行分级,以降低其结构的不均一性。随后,将分级后的木质素样品与聚乙烯醇(PVA)结合,制备出厚度均匀、表面光滑的塑料。所得复合薄膜的拉伸强度和应变分别高达75MPa和1050%,超过了目前最先进的木质素基生物塑料。机理研究表明,力学性能的增强归因于木质素和PVA羟基之间的内部非共价相互作用。值得注意的是,PVA/木质素薄膜在土壤中掩埋92天后可生物降解。本研究为合理设计木质素基可生物降解聚合物作为传统塑料的可持续替代品铺平了道路。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验