Li Wen, Liu Yichen, Zheng Xiaoming, Han Jing, Shi Anchen, Wong Chi Chun, Wang Ruochen, Jing Xunan, Li Yan, Fan Shu, Zhang Cuiyu, Chen Yinnan, Guo Gang, Yu Jun, She Junjun
Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
ACS Nano. 2024 Dec 31;18(52):35443-35464. doi: 10.1021/acsnano.4c12801. Epub 2024 Nov 28.
Intestinal dysbiosis and the associated l-tryptophan metabolic disorder are pivotal in inflammatory bowel disease progression, leading to a compromised intestinal barrier integrity. Remedying the dysfunction in tryptophan metabolism has emerged as a promising therapeutic strategy. Herein, we reprogram the tryptophan metabolism by EcN-TRP@A/G, encapsulating the engineered probiotic, EcN-TRP, with enhanced tryptophan synthesis capacity, for sustained modulation, thereby restoring intestinal barrier function and microbial homeostasis. The pH-responsive dual-layered EcN-TRP@A/G microcapsule developed high-voltage electrospraying and liquid interface self-assembly, preserved probiotic viability in the harsh gastrointestinal milieu, and facilitated targeted colon release. Bioluminescent tracking in mice reveals a 22.84-fold increase in EcN-TRP@A/G viability and distribution compared to naked EcN-TRP. Targeted metabolomics highlights EcN-TRP@A/G's modulation of the tryptophan-indole pathway. Oral administration of EcN-TRP@A/G sustained elevates indole metabolites, particularly indole-3-acetic acid and indole-3-propionic acid, in colon tissue for up to 7 days. In IBD mice, EcN-TRP@A/G improves intestinal permeability, reduces inflammation, and recovers the gut microbiome by enhancing beneficial bacteria abundance like and while suppressing pathogenic strains like -. Our findings offer a cost-effective approach, harnessing the probiotic metabolic potential through engineered modifications for effective IBD treatment.
肠道菌群失调及相关的L-色氨酸代谢紊乱在炎症性肠病进展中起关键作用,导致肠道屏障完整性受损。纠正色氨酸代谢功能障碍已成为一种有前景的治疗策略。在此,我们通过EcN-TRP@A/G对色氨酸代谢进行重编程,将具有增强色氨酸合成能力的工程益生菌EcN-TRP封装起来,以实现持续调节,从而恢复肠道屏障功能和微生物稳态。通过高压电喷雾和液界面自组装开发的pH响应双层EcN-TRP@A/G微胶囊,在恶劣的胃肠道环境中保持了益生菌的活力,并促进了靶向结肠释放。小鼠体内的生物发光追踪显示,与裸露的EcN-TRP相比,EcN-TRP@A/G的活力和分布增加了22.84倍。靶向代谢组学突出了EcN-TRP@A/G对色氨酸-吲哚途径的调节作用。口服EcN-TRP@A/G可使结肠组织中的吲哚代谢产物持续升高,尤其是吲哚-3-乙酸和吲哚-3-丙酸,长达7天。在炎症性肠病小鼠中,EcN-TRP@A/G可改善肠道通透性,减轻炎症,并通过增加如 和 等有益菌的丰度,同时抑制如 - 等致病菌株来恢复肠道微生物群。我们的研究结果提供了一种经济有效的方法,通过工程改造利用益生菌的代谢潜力来有效治疗炎症性肠病。