Kang Wendi, Tang Peiyun, Luo Yingen, Lian Qicai, Zhou Xuan, Ren Jinrui, Cong Tianhao, Miao Lei, Li Hang, Huang Xiaoyu, Ou Aixin, Li Hao, Yan Zhentao, Di Yingjie, Li Xiao, Ye Feng, Zhu Xiaoli, Yang Zhengqiang
Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
Acad Radiol. 2025 Apr;32(4):2013-2026. doi: 10.1016/j.acra.2024.10.038. Epub 2024 Nov 28.
To develop and validate multiple machine learning predictive models incorporating clinical features and pretreatment multiparametric magnetic resonance imaging (MRI) radiomic features for predicting treatment response to transarterial chemoembolization combined with molecular targeted therapy plus immunotherapy in unresectable hepatocellular carcinoma (HCC).
This retrospective study involved 276 patients with unresectable HCC who received combination therapy from 4 medical centers. Patients were divided into one training cohort and two independent external validation cohorts. 16 radiomic features from six multiparametric MRI sequences and 2 clinical features were used to build six machine learning models. The models were evaluated using the area under the curve (AUC), decision curve analysis, and incremental predictive value.
Alpha-fetoprotein and neutrophil-to-lymphocyte ratio are clinical independent predictors of treatment response. In the training cohort and two external validation cohorts, the AUCs and 95% confidence intervals for predicting treatment response were respectively 0.782 (0.698-0.857) 0.695 (0.566-0.823), and 0.679 (0.542-0.810) for the clinical model; 0.942 (0.903-0.974), 0.869 (0.761-0.949), and 0.868 (0.769-0.942) for the radiomics model; and 0.956 (0.920-0.984), 0.895 (0.810-0.967), and 0.892 (0.804-0.957) for the combined clinical-radiomics model. In the three cohorts, the incremental predictive value of the radiomics model over the clinical model was 49.2% (P < 0.001), 28.8% (P < 0.001), and 31.5% (P < 0.001).
The combined clinical-radiomics model may provide a reliable and non-invasive tool to predict individual treatment responses and guide and improve clinical decision-making in combination therapy of HCC patients.
开发并验证多个机器学习预测模型,这些模型纳入临床特征和治疗前多参数磁共振成像(MRI)的放射组学特征,用于预测不可切除肝细胞癌(HCC)经动脉化疗栓塞联合分子靶向治疗加免疫治疗的疗效。
这项回顾性研究纳入了来自4个医学中心接受联合治疗的276例不可切除HCC患者。患者被分为一个训练队列和两个独立的外部验证队列。使用来自六个多参数MRI序列的16个放射组学特征和2个临床特征构建六个机器学习模型。使用曲线下面积(AUC)、决策曲线分析和增量预测值对模型进行评估。
甲胎蛋白和中性粒细胞与淋巴细胞比值是治疗反应的临床独立预测因素。在训练队列和两个外部验证队列中,临床模型预测治疗反应的AUC及95%置信区间分别为0.782(0.698 - 0.857)、0.695(0.566 - 0.823)和0.679(0.542 - 0.810);放射组学模型分别为0.942(0.903 - 0.974)、0.869(0.761 - 0.949)和0.868(0.769 - 0.942);临床 - 放射组学联合模型分别为0.956(0.920 - 0.984)、0.895(0.810 - 0.967)和0.892(0.804 - 0.957)。在这三个队列中,放射组学模型相对于临床模型的增量预测值分别为49.2%(P < 0.001)、28.8%(P < 0.001)和31.5%(P < 0.001)。
临床 - 放射组学联合模型可能提供一种可靠的非侵入性工具,以预测个体治疗反应,并指导和改善HCC患者联合治疗中的临床决策。