Suppr超能文献

转运过渡金属的P型ATP酶:末端金属结合结构域作为自抑制尾部的传感器。

Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails.

作者信息

Hu Qiaoxia, Sitsel Oleg, Bågenholm Viktoria, Grønberg Christina, Lyu Pin, Pii Svane Anna Sigrid, Andersen Kasper Røjkjær, Laursen Nick Stub, Meloni Gabriele, Nissen Poul, Juhl Dennis W, Nielsen Jakob Toudahl, Nielsen Niels Chr, Gourdon Pontus

机构信息

Department of Biomedical Sciences, University of Copenhagen, Denmark.

Department of Molecular Biology and Genetics, Aarhus University, Denmark.

出版信息

FEBS J. 2025 Apr;292(7):1654-1674. doi: 10.1111/febs.17330. Epub 2024 Nov 28.

Abstract

Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu-specific P-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.

摘要

铜是一种必需的微量营养素,但在高浓度时对细胞具有高度毒性。P-ATPase蛋白对这种调节至关重要,可实现跨细胞膜的主动外排。与其他P型ATPase相比,P-ATPase的一种独特分子适应性是在胞质末端存在金属结合结构域(MBD),然而其特征描述较少,作用机制也难以捉摸。在这里,我们展示了使用核磁共振确定的原型铜特异性P-ATPase LpCopA的无金属和金属结合形式的MBD结构。MBD由一个柔性尾部和一个结构化核心组成,核心具有一个由三个硫原子定义的金属离子结合位点,其中一个与所谓的CXXC基序相关。此外,我们证明MBD可能起调节作用而非参与离子传递,这取决于经典的P型ATPase E1-E2转运机制。具体而言,柔性尾部似乎负责自抑制,而金属结合核心用于铜传感。这个模型通过一种构象敏感且靶向MBD的纳米抗体得到验证,该纳米抗体在结构和功能上可以取代柔性尾部。我们提出,在低铜条件下,铜ATPase通过MBD介导的对ATPase核心可溶性结构域的干扰发生自抑制,而当铜水平升高时,通过金属诱导的MBD解离实现金属转运。这使得P-ATPase“吸尘器”能够调节自身活性,平衡细胞中关键微量营养素的水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b177/11970713/82a1cef8fc3c/FEBS-292-1654-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验