Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
Nat Commun. 2024 Nov 28;15(1):10321. doi: 10.1038/s41467-024-53537-2.
Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments. We subsequently develop a biosensor by encapsulating these optimised AuNCs in bacterial toxin-responsive liposomes, which is extensively studied by various single-particle techniques. Upon exposure to S. aureus toxins, the liposomes rupture, releasing AuNCs that generate a colourimetric signal after kidney-mimetic filtration. The biosensor is further validated in vitro and in vivo using a hyaluronic acid (HA) hydrogel implant infection model. Urine samples collected from mice with bacteria-infected HA hydrogel implants turn blue upon substrate addition, confirming the suitability of the sensor for non-invasive detection of implant-associated infections. This platform has significant potential as a versatile, cost-effective diagnostic tool.
金黄色葡萄球菌是导致医院获得性植入物相关感染的主要原因,造成了重大的发病率和死亡率,这凸显了快速、非侵入性和具有成本效益的诊断方法的必要性。在这里,我们优化了肾脏可清除的金纳米簇(AuNCs)的合成,以提高其催化活性,旨在开发一种用于细菌感染的灵敏比色诊断方法。全原子分子动力学(MD)模拟证实了谷胱甘肽包覆的 AuNCs 的稳定性,以及在复杂生理环境中具有过氧化物酶样活性的表面可及性。随后,我们通过将这些优化的 AuNCs 封装在细菌毒素响应性脂质体中,开发了一种生物传感器,并通过各种单粒子技术对其进行了广泛研究。当暴露于金黄色葡萄球菌毒素时,脂质体破裂,释放出 AuNCs,在肾脏模拟过滤后产生比色信号。该生物传感器在体外和体内使用透明质酸(HA)水凝胶植入物感染模型进行了进一步验证。从带有细菌感染的 HA 水凝胶植入物的小鼠收集的尿液样本在添加底物后变为蓝色,这证实了该传感器适用于植入物相关感染的非侵入性检测。该平台具有作为一种多功能、具有成本效益的诊断工具的巨大潜力。