Suppr超能文献

口腔黏膜中发现的反映活动性肺结核的 DNA 甲基化特征在结核病治疗过程中发生变化。

A DNA methylation signature identified in the buccal mucosa reflecting active tuberculosis is changing during tuberculosis treatment.

机构信息

Division of Inflammation and Infection, Lab 1, Floor 12, Linköping University, 58185, Linköping, Sweden.

Division of Infectious Diseases, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

出版信息

Sci Rep. 2024 Nov 28;14(1):29552. doi: 10.1038/s41598-024-80570-4.

Abstract

Tuberculosis (TB) poses a significant global health threat, with high mortality rates if left untreated. Current sputum-based TB treatment monitoring methods face numerous challenges, particularly in relation to sample collection and analysis. This pilot study explores the potential of TB status assessment using DNA methylation (DNAm) signatures, which are gaining recognition as diagnostic and predictive tools for various diseases. We collected buccal swab samples from pulmonary TB patients at the commencement of TB treatment (n = 10), and at one, two, and six-month follow-up intervals. We also collected samples from healthy controls (n = 10) and individuals exposed to TB (n = 10). DNAm patterns were mapped using the Illumina Infinium Methylation EPIC 850 K platform. A DNAm profile distinct from controls was discovered in the oral mucosa of TB patients at the start of treatment, and this profile changed throughout the course of TB treatment. These findings were corroborated in a separate validation cohort of TB patients (n = 41), monitored at two and six months into their TB treatment. We developed a machine learning model to predict symptom scores using the identified DNAm TB profile. The model was trained and evaluated on the pilot, validation, and two additional independent cohorts, achieving an R of 0.80, Pearson correlation of 0.90, and mean absolute error of 0.13. While validation is needed in larger cohorts, the result opens the possibility of employing DNAm-based diagnostic and prognostic tools for TB in future clinical practice.

摘要

结核病(TB)是一个严重的全球健康威胁,如果不进行治疗,死亡率很高。目前基于痰液的 TB 治疗监测方法面临许多挑战,特别是在样本采集和分析方面。这项初步研究探讨了使用 DNA 甲基化(DNAm)特征评估 TB 状态的潜力,这些特征作为各种疾病的诊断和预测工具越来越受到关注。我们从开始接受 TB 治疗的肺结核患者(n=10)、治疗一个月、两个月和六个月的随访期间采集了口腔拭子样本。我们还从健康对照者(n=10)和接触过 TB 的个体(n=10)中采集了样本。使用 Illumina Infinium Methylation EPIC 850 K 平台绘制了 DNAm 图谱。我们发现,在治疗开始时,TB 患者口腔黏膜中的 DNAm 图谱与对照组明显不同,并且在 TB 治疗过程中这种图谱发生了变化。在另一个单独的 TB 患者验证队列(n=41)中,在接受 TB 治疗两个月和六个月时也得到了验证。我们开发了一种使用鉴定的 DNAm TB 特征预测症状评分的机器学习模型。该模型在初步研究、验证和另外两个独立队列中进行了训练和评估,达到了 0.80 的 R 值、0.90 的 Pearson 相关性和 0.13 的平均绝对误差。虽然需要在更大的队列中进行验证,但该结果为未来临床实践中采用基于 DNAm 的 TB 诊断和预后工具提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f197/11604703/6eee2b2ad0e4/41598_2024_80570_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验