Suppr超能文献

通过硅衬底碳化合成碳化硅纳米线的H/CH气体流量比新的关键生长参数及机理模型。

A new critical growth parameter of H/CH gas flow ratio and mechanistic model for SiC nanowire synthesis via Si substrate carbonization.

作者信息

Koo Junghyun, Kim Chinkyo

机构信息

Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.

Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea.

出版信息

Sci Rep. 2024 Nov 28;14(1):29629. doi: 10.1038/s41598-024-81254-9.

Abstract

SiC structures, including nanowires and films, can be effectively grown on Si substrates through carbonization. However, growth parameters other than temperature, which influence the preferential formation of SiC nanowires or films, have not yet been identified. In this work, we investigate SiC synthesis via Si carbonization using methane (CH) by varying the growth temperature and the hydrogen to methane gas flow ratio (H/CH). We demonstrate that adjusting these parameters allows for the preferential growth of SiC nanowires or films. Specifically, SiC nanowires are preferentially grown when the H/CH ratio exceeds a specific threshold, which varies with the growth temperature, ranging between 1200 and 1310 °C. Establishing this precise growth window for SiC nanowires in terms of the H/CH ratio and growth temperature provides new insights into the parameter-driven morphology of SiC. Furthermore, we propose a mechanistic model to explain the preferential growth of either SiC nanowires or films, based on the kinetics of gas-phase reactions and surface processes. These findings not only advance our understanding of SiC growth mechanisms but also pave the way for optimized fabrication strategies for SiC-based nanostructures.

摘要

包括纳米线和薄膜在内的碳化硅(SiC)结构可以通过碳化在硅衬底上有效地生长。然而,除温度外,影响SiC纳米线或薄膜优先形成的生长参数尚未确定。在这项工作中,我们通过改变生长温度和氢气与甲烷气体流量比(H₂/CH₄),研究了利用甲烷(CH₄)通过硅碳化合成SiC的过程。我们证明,调整这些参数可以实现SiC纳米线或薄膜的优先生长。具体而言,当H₂/CH₄比率超过特定阈值时,SiC纳米线会优先生长,该阈值随生长温度而变化,范围在1200至1310°C之间。根据H₂/CH₄比率和生长温度确定SiC纳米线的精确生长窗口,为SiC的参数驱动形态提供了新的见解。此外,我们基于气相反应动力学和表面过程,提出了一个机理模型来解释SiC纳米线或薄膜的优先生长。这些发现不仅增进了我们对SiC生长机制的理解,也为基于SiC的纳米结构的优化制造策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0844/11604957/24d318264a80/41598_2024_81254_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验