Wu Fenghuang, Zhou Yunyue, Beardall John, Raven John A, Peng Baoyi, Xu Leyao, Zhang Hao, Li Jingyao, Xia Jianrong, Jin Peng
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
New Phytol. 2025 Feb;245(4):1608-1624. doi: 10.1111/nph.20323. Epub 2024 Nov 29.
Marine microalgae demonstrate a notable capacity to adapt to high CO and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole-genome resequencing of populations under ambient, high-CO, warming and high CO + warming at 2-yr intervals over a 4-yr adaptation period. The common genes selected between 2- and 4-yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4-yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long-term adaptation of microalgae to high CO and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.
在全球变化的背景下,海洋微藻表现出显著的适应高二氧化碳浓度和变暖的能力。然而,在高二氧化碳浓度和变暖同时存在的条件下,它们进化过程的动态变化仍知之甚少。在此,我们分析了模式海洋硅藻三角褐指藻实验种群的进化动态。在为期4年的适应期内,我们每隔2年对处于环境条件、高二氧化碳浓度、变暖以及高二氧化碳浓度+变暖条件下的种群进行全基因组重测序。发现在2年和4年适应期之间选择的共同基因参与蛋白质泛素化和降解以及三羧酸(TCA)循环,并且无论实验条件或适应持续时间如何,这些基因都会被持续选择。仅在4年适应期选择的独特基因在呼吸作用、脂肪酸和氨基酸代谢中发挥作用,有助于在变暖条件下适应长时间的高二氧化碳浓度。代谢组学水平上的相应变化,以及这些途径中代谢物丰度的显著改变,支持了基因组学研究结果。我们整合基因组学和代谢组学数据的研究表明,微藻对高二氧化碳浓度和/或变暖的长期适应可能具有复杂且动态的遗传过程特征,并可能增进我们对微藻适应全球变化的理解。