Suppr超能文献

基于加权基因共表达网络分析的免疫球蛋白 A 肾病诊断模型的建立与验证。

Establishment and validation of diagnostic model in immunoglobulin A nephropathy based on weighted gene co-expression network analysis.

机构信息

Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China.

Department of Gynaecology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province, China.

出版信息

Medicine (Baltimore). 2024 Nov 29;103(48):e39930. doi: 10.1097/MD.0000000000039930.

Abstract

Bioinformatics analysis helps to understand the underlying mechanisms and adjust diagnostic and treatment strategies for immunoglobulin A nephropathy (IgAN) by screening gene expression datasets. We explored the biological function of IgAN, and established and validated a diagnostic model for IgAN using weighted gene co-expression network analysis. Using the GSE93798 and GSE37460 datasets, we performed differential expression analysis, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein-protein network, and identified hub genes. A diagnostic model was built using a receiver operating characteristic curve, calibration plot, and decision curve analysis. Two Gene Expression Omnibus (GEO) datasets were integrated to screen 38 differentially expressed genes between patients with IgAN and normal kidney donors in glomerular samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the IL-17 and relaxin signaling pathways. We constructed a protein-protein interaction (PPI) network of differentially expressed genes using the STRING database and cross-compared it with the results of weighted gene correlation network analysis to screen out the top 10 key genes: FOS, EGR2, FOSB, NR4A1, BR4A3, FOSL1, NR4A2, ALB, CD53, C3AR1.We also found that the immune infiltration level was remarkably increased in IgAN tissues. We established a 5-gene panel diagnostic model (ACTA2, ALB, AFM, ALDH1L1, and ALDH6A1). The combined diagnostic ability was high, with the area under the curve (AUC) was 0.964. Based on these 5 genes, we also developed a risk-scoring evaluation system for individuals. The calibration plot indicated that the nomogram-predicted probability of nonadherence was highly correlated with actual diagnosed nonadherence, and the decision curve analysis indicated that patients had a relatively good net benefit. The model and gene expression were also validated using an external dataset. Our study provides directions for exploring the potential molecular mechanisms of IgAN as well as diagnostic and therapeutic strategies.

摘要

生物信息学分析通过筛选基因表达数据集,有助于了解免疫球蛋白 A 肾病(IgAN)的潜在机制,并调整诊断和治疗策略。我们通过加权基因共表达网络分析探索 IgAN 的生物学功能,建立和验证 IgAN 的诊断模型。使用 GSE93798 和 GSE37460 数据集,我们进行了差异表达分析、基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析、构建了蛋白质-蛋白质网络,并确定了枢纽基因。使用受试者工作特征曲线、校准图和决策曲线分析构建诊断模型。整合两个基因表达综合(GEO)数据集,筛选肾小球样本中 IgAN 患者与正常肾脏供体之间的 38 个差异表达基因。KEGG 富集分析表明,差异表达基因主要富集在 IL-17 和松弛素信号通路中。我们使用 STRING 数据库构建了差异表达基因的蛋白质-蛋白质相互作用(PPI)网络,并与加权基因相关性网络分析的结果进行交叉比较,筛选出前 10 个关键基因:FOS、EGR2、FOSB、NR4A1、BR4A3、FOSL1、NR4A2、ALB、CD53、C3AR1。我们还发现 IgAN 组织中的免疫浸润水平显著增加。我们建立了一个 5 基因面板诊断模型(ACTA2、ALB、AFM、ALDH1L1 和 ALDH6A1)。联合诊断能力较高,曲线下面积(AUC)为 0.964。基于这 5 个基因,我们还开发了个体风险评分评估系统。校准图表明,列线图预测的不依从概率与实际诊断的不依从高度相关,决策曲线分析表明患者具有相对较好的净收益。还使用外部数据集验证了该模型和基因表达。我们的研究为探索 IgAN 的潜在分子机制以及诊断和治疗策略提供了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b15b/11608691/e27b9d7039d8/medi-103-e39930-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验