Oróstica Karen, Mardones Felipe, Bernal Yanara A, Molina Samuel, Orchard Marcos, Verdugo Ricardo A, Carvajal-Hausdorf Daniel, Marcelain Katherine, Contreras Seba, Armisen Ricardo
Facultad de Medicina, Universidad de Talca, Talca, Chile.
Facultad de Medicina, Universidad de Talca, Talca, Chile.
Cancer Lett. 2024 Nov 28;611:217348. doi: 10.1016/j.canlet.2024.217348.
Cancers of unknown primary (CUP) are a heterogeneous group of aggressive metastatic cancers where standardised diagnostic techniques fail to identify the organ where it originated, resulting in a poor prognosis and resistance to treatment. Recent advances in large-scale sequencing techniques have enabled the identification of mutational signatures specific to particular tumour subtypes, even from liquid biopsy samples such as blood. This breakthrough paves the way for the development of new cost-effective diagnostic strategies. This mini-review explores recent advancements in Machine Learning (ML) and its application to tumour classification methods for CUP patients, identifying its weaknesses and strengths when classifying the tumour type. In the era of multi-omics, integrating several sources of information (e.g., imaging, molecular biomarkers, and family history) requires important theoretical advancements: increasing the dimensionality of the problem can result in lowering the predictive accuracy and robustness when data is scarce. Here, we review and discuss different architectures and strategies for incorporating cutting-edge machine learning into CUP diagnosis, aiming to bridge the gap between theory and clinical practice.
原发灶不明的癌症(CUP)是一组异质性的侵袭性转移性癌症,标准化诊断技术无法确定其原发器官,导致预后不良且对治疗产生抗性。大规模测序技术的最新进展使得能够识别特定肿瘤亚型特有的突变特征,即使是从血液等液体活检样本中也能做到。这一突破为开发新的具有成本效益的诊断策略铺平了道路。这篇小型综述探讨了机器学习(ML)的最新进展及其在CUP患者肿瘤分类方法中的应用,确定了其在肿瘤类型分类时的优缺点。在多组学时代,整合多种信息来源(如影像学、分子生物标志物和家族史)需要重要的理论进展:当数据稀缺时,增加问题的维度可能会导致预测准确性和稳健性降低。在这里,我们回顾并讨论将前沿机器学习纳入CUP诊断的不同架构和策略,旨在弥合理论与临床实践之间的差距。