Suppr超能文献

使用无监督深度学习对癌细胞系多组学数据集进行人工合成扩充。

Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning.

机构信息

ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.

INESC-ID, 1000-029, Lisboa, Portugal.

出版信息

Nat Commun. 2024 Nov 29;15(1):10390. doi: 10.1038/s41467-024-54771-4.

Abstract

Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOSA (Multi-Omic Synthetic Augmentation), specifically designed to integrate and augment the Cancer Dependency Map (DepMap). Harnessing orthogonal multi-omic information, this model successfully generates molecular and phenotypic profiles, resulting in an increase of 32.7% in the number of multi-omic profiles and thereby generating a complete DepMap for 1523 cancer cell lines. The synthetically enhanced data increases statistical power, uncovering less studied mechanisms associated with drug resistance, and refines the identification of genetic associations and clustering of cancer cell lines. By applying SHapley Additive exPlanations (SHAP) for model interpretation, MOSA reveals multi-omic features essential for cell clustering and biomarker identification related to drug and gene dependencies. This understanding is crucial for developing much-needed effective strategies to prioritize cancer targets.

摘要

整合多种类型的生物数据对于全面理解癌症生物学至关重要,但由于数据的异质性、复杂性和稀疏性,这仍然具有挑战性。针对这一问题,我们的研究引入了一种无监督的深度学习模型 MOSA(多组学综合增强),专门用于整合和增强癌症依赖图谱(DepMap)。该模型利用正交的多组学信息,成功生成了分子和表型特征,使多组学特征的数量增加了 32.7%,从而为 1523 种癌细胞系生成了完整的 DepMap。经过综合增强的数据提高了统计能力,揭示了与耐药性相关的研究较少的机制,并改进了遗传关联的识别和癌细胞系的聚类。通过应用 SHapley Additive exPlanations(SHAP)进行模型解释,MOSA 揭示了与药物和基因依赖性相关的细胞聚类和生物标志物识别的关键多组学特征。这种理解对于制定急需的有效策略来确定癌症靶点至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9156/11607321/dcd46428cca1/41467_2024_54771_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验