Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China.
Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
Food Res Int. 2024 Nov;196:115011. doi: 10.1016/j.foodres.2024.115011. Epub 2024 Sep 3.
Dietary oligo- and polysaccharides modulate gut microbiota and thus exert prebiotic activity, which is determined by their heterogeneous structure. To explore the correlations between monosaccharide profile and microbial community, simulated gut fermentation of different glycans, including arabinan (ArB), galactooligosaccharide (GOS), arabinogalactan (ArG), rhamnogalacturonan (RhG), and xyloglucan (XyG) that are characterized by typical sugar residues were performed. Results showed that RhG displayed high contents of galacturonic acid (344.79 mg/g), rhamnose (171.70 mg/g), and galactose (151.77 mg/g), and the degradation ratio of them after fermentation was 73.87 %, 84.96 %, and 87.11 %, respectively. Meanwhile, the relative abundance of glycan-degrading bacteria Bacteroides in the RhG was boosted from 4 h (4.97 %) to 48 h (36.45 %). Butyrate-generating bacteria Megasphaera (56.69 %) and Bifidobacterium (28.02 %) are dominant genera in the ArB, which generated the highest concentration of carbohydrate-metabolite (94.58 mmol/L) in terms of acetate, propionate, butyrate and valerate, followed by the ArG (87.36 mmol/L). However, ammonia generation of the ArG increased rapidly, representing the highest content of protein-metabolite (66.36 mmol/L) including ammonia, isobutyrate, and isovalerate. As compared, metabolites generated from protein and carbohydrates grow steadily at a low level during the XyG fermentation. Correlation analysis further indicated that Bacteroides was positively correlated with propionate (p < 0.001), galacturonic acid (p < 0.001), and rhamnose (p < 0.05), while Bifidobacterium has positive correlation with butyrate and arabinose (p < 0.01). Overall, monosaccharides composition in the different oligo- and polysaccharides induces distinct responses of the dominant microbiota and thus modulates the subsequent fermentation metabolites of carbohydrate and protein, promoting a deep understanding of the structure-fermentation relationship of dietary glycans.
膳食低聚糖和多糖通过调节肠道微生物群发挥益生元活性,其活性取决于它们的异质结构。为了探索单糖谱与微生物群落之间的相关性,对不同聚糖(包括阿拉伯聚糖(ArB)、半乳糖寡糖(GOS)、阿拉伯半乳聚糖(ArG)、鼠李半乳糖醛酸聚糖(RhG)和木葡聚糖(XyG))进行了模拟肠道发酵,这些聚糖的特征是具有典型的糖残基。结果表明,RhG 含有较高含量的半乳糖醛酸(344.79mg/g)、鼠李糖(171.70mg/g)和半乳糖(151.77mg/g),发酵后它们的降解率分别为 73.87%、84.96%和 87.11%。同时,RhG 中聚糖降解菌拟杆菌的相对丰度从 4 小时(4.97%)增加到 48 小时(36.45%)。产丁酸菌 Megasphaera(56.69%)和双歧杆菌(28.02%)是 ArB 中的优势属,它们生成了最高浓度的碳水化合物代谢物(94.58mmol/L),包括乙酸、丙酸、丁酸和戊酸,其次是 ArG(87.36mmol/L)。然而,ArG 的氨生成迅速增加,代表了包括氨、异丁酸和异戊酸在内的蛋白质代谢物的最高含量(66.36mmol/L)。相比之下,XyG 发酵过程中蛋白质和碳水化合物代谢物的生成水平稳定且较低。相关性分析进一步表明,拟杆菌与丙酸盐(p<0.001)、半乳糖醛酸(p<0.001)和鼠李糖(p<0.05)呈正相关,而双歧杆菌与丁酸盐和阿拉伯糖呈正相关(p<0.01)。总之,不同的低聚糖和多糖中单糖的组成诱导了主要微生物群的不同反应,从而调节碳水化合物和蛋白质的后续发酵代谢物,促进了对膳食糖结构-发酵关系的深入了解。