Wang Xiao-Xue, Guan De-Hui, Ma Xin-Yue, Yuan Xin-Yuan, Zhu Qing-Yao, Deng Hao-Tian, Wang Huan-Feng, Xu Ji-Jing
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
International Center of Future Science, Jilin University, Changchun, 130012, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415727. doi: 10.1002/anie.202415727. Epub 2024 Dec 5.
Rechargeable batteries paired with lithium (Li) metal anodes are considered to be promising high-energy storage systems. However, the use of highly reactive Li metal and the formation of Li dendrites during battery operation would cause safety concerns, especially with the employment of highly flammable liquid electrolytes. Herein, a general strategy by engineering coordination-driven crosslinking networks is proposed to achieve high-performance solid polymer electrolytes. Through the coordination of metal-organic polyhedra (MOPs) with cellulose-based copolymers, the Li-conducted hypercrosslinked MOP (CHMOP-Li) polymer network is capable of enabling the rapid transport of Li. In addition to the high Li conductivity (1.02×10 S cm at 25 °C), CHMOP-Li electrolyte also exhibits a high Li transference number (0.75) and a wide electrochemical stability window. Benefiting from the thermally stable and mechanically strong CHMOP-Li electrolyte film, the short-circuiting of the symmetric batteries is prevented even after 3200 h of cycling and a high specific energy of 300 Wh kg is achieved for the Li-metal battery. The solid-state Li-O batteries fabricated with CHMOP-Li electrolyte also show good cycling performance (500 cycles) and high discharge capacity (15740 mAh g). The proposed coordination-driven crosslinking strategies offer an alternative route to design high-performance next-generation sustainable battery chemistries.
与锂(Li)金属阳极配对的可充电电池被认为是很有前景的高能量存储系统。然而,高活性锂金属的使用以及电池运行过程中锂枝晶的形成会引发安全问题,特别是在使用高度易燃的液体电解质时。在此,提出了一种通过构建配位驱动的交联网络的通用策略来实现高性能固体聚合物电解质。通过金属有机多面体(MOPs)与纤维素基共聚物的配位,锂导电的超交联MOP(CHMOP-Li)聚合物网络能够实现锂的快速传输。除了在25°C时具有高的锂电导率(1.02×10⁻³ S cm⁻¹)外,CHMOP-Li电解质还表现出高的锂迁移数(0.75)和宽的电化学稳定窗口。受益于热稳定且机械强度高的CHMOP-Li电解质膜,即使在循环3200小时后,对称电池也能防止短路,并且锂金属电池实现了300 Wh kg⁻¹的高比能量。用CHMOP-Li电解质制造的固态锂氧电池也表现出良好的循环性能(500次循环)和高放电容量(15740 mAh g⁻¹)。所提出的配位驱动交联策略为设计高性能下一代可持续电池化学提供了一条替代途径。