Lei Huanyu, Liu Xian-You, Wang Yicong, Li Xing-Han, Yan Xiao-Yun, Liu Tong, Huang Jiahao, Li Weiyi, Wang Lichun, Kuang Xiaoyi, Miao Xiaran, Bian Fenggang, Huang Mingjun, Liu Yuchu, Cheng Stephen Z D
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States.
J Am Chem Soc. 2024 Dec 11;146(49):33403-33412. doi: 10.1021/jacs.4c09089. Epub 2024 Nov 30.
Soft matters, particularly giant molecular self-assembly, have successfully replicated complex structures previously exclusive to metal alloys. These superlattices are constructed from mesoatoms─supramolecular spherical motifs of aggregated molecules, and the formation of superlattices critically depends on the volume distributions of these mesoatoms. Herein, we introduce two general methods to control volume asymmetry (i.e., the volumes' ratio of the largest to smallest mesoatoms, ) within giant molecular self-assembly. Leveraging the spontaneous increase in the mesoatomic volume ratio in unary systems and self-sorted binary blends, we systematically adjust the volume asymmetry from 1.0 to 9.0 across 24 unary systems and 56 binary blends of giant molecules, uncovering the formation of various superlattices, including BCC, Frank-Kasper A15, σ, Laves C14, C15, NaZn, AlB, and notably, the first NaCl like superlattice in homogeneous soft matter self-assembly. A geometric-based analysis, combined with experimental results, further establishes a quantitative relationship between volume asymmetry and the corresponding superlattice formations, thus laying a solid foundation for superlattice engineering within giant molecular systems to mimic and even beyond metal alloys. The lattice parameters of various unit cells range from approximately 5 to 20 nm. Our investigation in giant molecules could guide the advancement of mesoscopic, periodic soft matter materials.
软物质,特别是大分子自组装,已经成功复制了以前金属合金独有的复杂结构。这些超晶格由介原子——聚集分子的超分子球形基序构建而成,超晶格的形成关键取决于这些介原子的体积分布。在此,我们介绍两种控制大分子自组装中体积不对称性(即最大介原子与最小介原子的体积比)的通用方法。利用一元体系和自分类二元共混物中介原子体积比的自发增加,我们在24个一元体系和56个大分子二元共混物中系统地将体积不对称性从1.0调整到9.0,发现了各种超晶格的形成,包括体心立方(BCC)、弗兰克 - 卡斯帕A15、σ、拉维斯C14、C15、NaZn、AlB,值得注意的是,在均匀软物质自组装中首次出现了类似氯化钠的超晶格。基于几何的分析与实验结果相结合,进一步建立了体积不对称性与相应超晶格形成之间的定量关系,从而为大分子系统内的超晶格工程奠定了坚实基础,以模仿甚至超越金属合金。各种晶胞的晶格参数范围约为5至20纳米。我们对大分子的研究可以指导介观周期性软物质材料的发展。