Department of Otorhinolaryngology-Head & Neck Surgery, Singapore General Hospital (SGH), Singapore, Singapore.
Department of Otorhinolaryngology, Sengkang General Hospital, Singapore, Singapore.
Sleep Breath. 2024 Nov 30;29(1):36. doi: 10.1007/s11325-024-03173-3.
Conventional obstructive sleep apnea (OSA) diagnosis via polysomnography can be costly and inaccessible. Recent advances in artificial intelligence (AI) have enabled the use of craniofacial photographs to diagnose OSA. This meta-analysis aims to clarify the diagnostic accuracy of this innovative approach.
Two blinded reviewers searched PubMed, Embase, Scopus, Web of Science, and IEEE Xplore databases, then selected and graded the risk of bias of observational studies of adults (≥ 18 years) comparing the diagnostic performance of AI algorithms using craniofacial photographs, versus conventional OSA diagnostic criteria (i.e. apnea-hypopnea index [AHI]). Studies were excluded if they detected apneic events without diagnosing OSA. AI models evaluated with a random split test set or k-fold cross-validation were included in a Bayesian bivariate meta-analysis.
From 5,147 records, 6 studies were included, containing 10 AI models trained/tested on 1,417/983 participants. The risk of bias was low. AI trained on craniofacial photographs achieved a pooled 84.9% sensitivity (95% credible interval [95% CrI]: 77.1-90.7%) and 71.2% specificity (95% CrI: 60.7-81.4%). Bayesian meta-regression identified deep learning (convolutional neural networks) as the most accurate AI algorithm (91.1% sensitivity, 79.2% specificity) comparable to home sleep apnea tests. AHI cutoffs, OSA prevalence, feature engineering, input data, camera type and informativeness of Bayesian prior did not alter diagnostic accuracy. There was no substantial publication bias.
AI trained on craniofacial photographs have high diagnostic accuracy and should be considered as a low-cost OSA screening tool. Future work focused on deep learning using smartphone images could improve the feasibility of this approach in primary care.
通过多导睡眠图进行传统的阻塞性睡眠呼吸暂停(OSA)诊断可能既昂贵又难以获得。人工智能(AI)的最新进展使得使用颅面照片来诊断 OSA 成为可能。本荟萃分析旨在阐明这种创新方法的诊断准确性。
两名盲审员检索了 PubMed、Embase、Scopus、Web of Science 和 IEEE Xplore 数据库,然后选择并评估了比较使用颅面照片的 AI 算法与传统 OSA 诊断标准(即呼吸暂停-低通气指数 [AHI])的成人(≥18 岁)观察性研究的偏倚风险。如果研究检测到呼吸暂停事件而未诊断出 OSA,则将其排除在外。使用随机拆分测试集或 k 折交叉验证评估的 AI 模型被纳入贝叶斯双变量荟萃分析。
从 5147 条记录中,纳入了 6 项研究,其中包含 10 个 AI 模型,在 1417/983 名参与者上进行了训练/测试。偏倚风险较低。基于颅面照片训练的 AI 获得了 84.9%的综合敏感性(95%可信区间 [95%CrI]:77.1-90.7%)和 71.2%的特异性(95%CrI:60.7-81.4%)。贝叶斯荟萃回归确定深度学习(卷积神经网络)是最准确的 AI 算法(91.1%敏感性,79.2%特异性),与家庭睡眠呼吸暂停测试相当。AHI 截断值、OSA 患病率、特征工程、输入数据、相机类型和贝叶斯先验的信息量均未改变诊断准确性。不存在显著的发表偏倚。
基于颅面照片训练的 AI 具有较高的诊断准确性,应被视为一种低成本的 OSA 筛查工具。未来专注于使用智能手机图像的深度学习研究可能会提高这种方法在初级保健中的可行性。